• Title/Summary/Keyword: 볼륨 렌더링 공식

Search Result 2, Processing Time 0.018 seconds

Evaluation on Protrusion of the Imaginary Prostate Volume Using Three-Dimensional Volume Rendering (3차원 볼륨 렌더링을 이용한 가상 돌출형 전립선 부피 평가)

  • Seoung, Youl-Hun;Joo, Yong-Hyun;Rhim, Jae-Dong;Choe, Bo-Young
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.208-215
    • /
    • 2009
  • This study is to compare the accuracy of evaluation regarding the volume of the prostate, which three-dimensional volume rendering was produced the shape of protrusion, by measuring two kinds of craniocaudal length from the top of the protrusion and from the exclusion of the protrusion as the starting points. For the imaginary protrusion prostate models, total of 10 models were roughly made by using devils-tongue jelly and changing each of the 10 ml of capacity from 10 ml to 100 ml. For the protrusion prostate models aimed at estimating the real volume, through 64 cannel computed tomography (CT) and 3.0 tesla magnetic resonance image (MRI) were conducted by planimetry technique from three-dimensional volume rendering. And then we performed to evaluate on significance of these volumes by wilcoxon signed rank test. Also the obtained volumes data by ellipsoid volume formula were measured the volume of protrusion prostate models two times with each method using the two kinds of craniocaudal length from top of the protrusion and from exclusion of the protrusion as the starting points. Finally, the significance of differences using wilcoxon signed rank test was evaluated between the real volume by planimetry technique and the measured volume by ellipsoid volume formula from three-dimensional volume rendering. The average of the protrusion length on the models was $0.90{\pm}0.18\;mm$ in CT and was $0.75{\pm}0.11\;mm$ in MRI. There were not statistically significant difference between MRI and CT from the volume of protrusion prostate models (p=0.414). In MRI (p=0.139) and CT (p=0.057), there were not statistically significant difference between the real volume by planimetry technique and the measured volume by ellipsoid volume from exclusion of the protrusion as the starting points. While, there were statistically significant difference between the real volume by planimetry technique and the measured volume by ellipsoid volume from top of the protrusion as the starting points in MRI (p=0.005) and CT (p=0.005). For the accurate measurement of the protrusion prostate models, the craniocaudal length of the prostate should be measured from the exclusion of the protrusion as the starting points.

  • PDF

Photon Mapping-Based Rendering Technique for Smoke Particles (연기 파티클에 대한 포톤 매핑 기반의 렌더링 기법)

  • Song, Ki-Dong;Ihm, In-Sung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.14 no.4
    • /
    • pp.7-18
    • /
    • 2008
  • To realistically produce fluids such as smoke for the visual effects in the films or animations, we need two main processes: a physics-based modeling of smoke and a rendering of smoke simulation data, based on light transport theory. In the computer graphics community, the physics-based fluids simulation is generally adopted for smoke modeling. Recently, the interest of the particle-based Lagrangian simulation methods is increasing due to the advantages at simulation time, instead of the grid-based Eulerian simulation methods which was widely used. As a result, because the smoke rendering technique depends heavily on the modeling method, the research for rendering of the particle-based smoke data still remains challenging while the research for rendering of the grid-based smoke data is actively in progress. This paper focuses on realistic rendering technique for the smoke particles produced by Lagrangian simulation method. This paper introduces a technique which is called particle map, that is the expansion and modification of photon mapping technique for the particle data. And then, this paper suggests the novel particle map technique and shows the differences and improvements, compared to previous work. In addition, this paper presents irradiance map technique which is the pre-calculation of the multiple scattering term in the volume rendering equation to enhance efficiency at rendering time.

  • PDF