• Title/Summary/Keyword: 복합 분위수 회귀

Search Result 2, Processing Time 0.014 seconds

Bootstrapping Composite Quantile Regression (복합 분위수 회귀에 대한 붓스트랩 방법의 응용)

  • Seo, Kang-Min;Bang, Sung-Wan;Jhun, Myoung-Shic
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.2
    • /
    • pp.341-350
    • /
    • 2012
  • Composite quantile regression model is considered for iid error case. Since the regression coefficients are the same across different quantiles, composite quantile regression can be used to combine the strength across multiple quantile regression models. For the composite quantile regression, bootstrap method is examined for statistical inference including the selection of the number of quantiles and confidence intervals for the regression coefficients. Feasibility of the bootstrap method is demonstrated through a simulation study.

Selection of bandwidth for local linear composite quantile regression smoothing (국소 선형 복합 분위수 회귀에서의 평활계수 선택)

  • Jhun, Myoungshic;Kang, Jongkyeong;Bang, Sungwan
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.5
    • /
    • pp.733-745
    • /
    • 2017
  • Local composite quantile regression is a useful non-parametric regression method widely used for its high efficiency. Data smoothing methods using kernel are typically used in the estimation process with performances that rely largely on the smoothing parameter rather than the kernel. However, $L_2$-norm is generally used as criterion to estimate the performance of the regression function. In addition, many studies have been conducted on the selection of smoothing parameters that minimize mean square error (MSE) or mean integrated square error (MISE). In this paper, we explored the optimality of selecting smoothing parameters that determine the performance of non-parametric regression models using local linear composite quantile regression. As evaluation criteria for the choice of smoothing parameter, we used mean absolute error (MAE) and mean integrated absolute error (MIAE), which have not been researched extensively due to mathematical difficulties. We proved the uniqueness of the optimal smoothing parameter based on MAE and MIAE. Furthermore, we compared the optimal smoothing parameter based on the proposed criteria (MAE and MIAE) with existing criteria (MSE and MISE). In this process, the properties of the proposed method were investigated through simulation studies in various situations.