• Title/Summary/Keyword: 복합 막

Search Result 778, Processing Time 0.02 seconds

Effect of Support Resistance & Coating Thickness on Ethylene/Nitrogen Separation of PDMS Composite Membranes (지지체 투과저항과 코팅층의 두께가 PDMS 복합막의 에틸렌/질소의 투과성능에 미치는 영향)

  • 김정훈;최승학;박인준;이수복;강득주
    • Membrane Journal
    • /
    • v.14 no.1
    • /
    • pp.57-65
    • /
    • 2004
  • The effect of porous support layer resistance and PDMS (polydimethylsiloxane) coating thickness on ethylene/nitrogen separation of composite membranes was studied with the model of Pinnau and Wijmans〔1〕. To control the support resistance (or permeance), PES porous membranes were prepared by phase inversion process with various PES/NMP dope concentrations. The thickness of selective PDMS top layer was controlled by using a spin coater. Its cross-section and coating thickness were observed by scanning electron microscope (SEM). Pure gas permeation test was done with ethylene and nitrogen, respectively. The experimental result for olefin/nitrogen separation process matched well with theoretical result from the model used. The result shows that optimization between PDMS coating thickness and support resistance is important to get PDMS composite membranes with best performance.

Preparation and Characterizations of Ferroxane-Nafion Composite Membranes for PEMFC (PEMFC용 Ferroxane-나피온 복합막의 제조 및 특성분석)

  • Shin, Mun-Sik;Oh, Gyu-Hyeon;Park, Jin-Soo
    • Membrane Journal
    • /
    • v.26 no.2
    • /
    • pp.135-140
    • /
    • 2016
  • In this study, the organic-inorganic composite membranes composed of iron oxide (Ferroxane) and Nafion were developed as an alternative proton exchange membranes (PEMs) in proton exchange membrane fuel cell (PEMFC). Acetic acid-stabilized lepidocrocite (${\gamma}$-FeOOH) nanoparticles (ferroxane) was synthesized, and the ferroxane-Nafion composite membranes were prepared by mixing Nafion with the ferroxane. The composite membranes were investigated in terms of ionic conductivity, ion exchange capacity (IEC), FT-IR, thermal stability, etc. As a result, the ferroxane-Nafion composite membranes showed higher proton conductivity, IEC, thermal stability than Nafion recast membranes. The proton conductivity and IEC of the composite membrane with the best performance were $0.09S\;cm^{-1}$ and $0.906meq\;g^{-1}$, respectively.

Gas Permeation Properties of LDH-filled PTMSP Composite Membranes (LDH를 함유한 PTMSP 복합막의 기체투과 특성)

  • Jeong, Yeon-Eim;Hong, Se Lyung
    • Membrane Journal
    • /
    • v.22 no.5
    • /
    • pp.309-317
    • /
    • 2012
  • In this study, PTMSP/LDH composite membranes were prepared by the solution intercalation method with 1, 3, and 5 wt% LDH contents to PTMSP. To investigate the physico-chemical characteristics of composite membranes, the analytical methods such as FT-IR, TGA, XRD, UTM, and SEM have been utilized, and the gas permeability and selectivity properties of $H_2$, $N_2$, and $CO_2$ were evaluated. The permeability of the PTMSP/LDH composite membranes decreased as LDH content increased and the selectivity $H_2$ and $CO_2$ showed the maximum value at 5 wt% of LDH content. Permeability of PTMSP/LDH composite membrane increased as the gas permeation pressure increased. The difference of the increase in gas permeation pressure of the permeability of PTMSP/LDH composite membrane was slightly smaller than of PTMSP membrane.

Preparation of PEBAX/PVDF Composite Membrane and Separaration of Ethanol/Water Mixtures by Pervaporation (PEBAX/PVDF 복합막 제조 및 투과증발을 통한 에탄올/물 분리 연구)

  • Ye Won Jeong;Haeeun Na;Se Wook Jo;Min Young Shon
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.377-382
    • /
    • 2023
  • In this study, a PEBAX/PVDF composite membrane was fabricated, and its pervaporation performance was tested in an ethanol/water mixture. In addition, we attempted to improve the pervaporation performance of the composite membrane by forming a ZIF-8 layer on the surface of the PVDF substrate. The thickness of selective layer was optimized by comparing the pervaporation performance depending on the PEBAX thickness. A pervaporation test was performed on the Ethanol/Water mixture. As a result, the composite membrane using PVDF substrate with ZIF-8 layer had a flux of 1.98 kg/m2h and separation factor of 3.88, showing higher values of both permeation flux and selectivity than the composite membrane using bare PVDF substrate.

Recent Developments in Ion-Exchange Nanocomposite Membranes for Energy Applications (에너지용 이온 교환 복합막 최근 연구 개발 동향)

  • Hwang, Doo Sung;Chung, Tiffany;Wang, Tongshuai;Kim, Sangil
    • Membrane Journal
    • /
    • v.26 no.6
    • /
    • pp.432-448
    • /
    • 2016
  • In the last decade, various types of energy harvesting and conversion systems based on ion exchange membranes (IEMs) have been developed for eco-friendly power generation and energy-grid systems. In these membrane-based energy systems, high ion selectivity and conductivity properties of IEMs are critical parameters to improve efficiency of the systems such as proton exchange membrane fuel cells, anion exchange membrane fuel cells, redox flow batteries, water electrodialysis for hydrogen production, and reverse electrodialysis. This article suggests variable approaches to overcome trade-off limitation of polymeric membrane ion transport properties by reviewing various types of composite ion-exchange membranes including novel inorganic-organic nanocomposite membrane, surface modified membranes, cross-linked and pore-filled membranes.

Development Trend of Composite Materials for Membrane Hosuing (분리막 하우징용 복합소재의 연구개발 동향)

  • Kim, Deuk Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.26 no.1
    • /
    • pp.14-25
    • /
    • 2016
  • The membrane separation process is growing very fast because of the high efficiency and low cost compared with other traditional process. The membrane process consists of various components such as membrane, module and mechanical part. The requirements for materials used in the membrane separation are becoming more and more demanding for achievement of high efficiency. Membrane module is also considered as the one of the key component in the membrane system. Recently composite materials have been considered as the membrane housing due to their excellent property and low cost compared with stainless module. In this review, a various types of glass fiber and composite material are summarized and their potential for the application of membrane system is discussed.

폴리아크릴로니트릴과 모노아크릴록시에틸포스페이트 공중합체 막의 제조와 물-피리딘 혼합물의 투과증발 특성

  • 박춘호;남상용;이영무
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.131-132
    • /
    • 1997
  • 1. 서론 : 이온 복합막은 투과증발을 통한 유기수용액의 탈수에 있어서 높은 수투과유량과 선택도를 나타내는 것으로 알려져 있다. 그러나 장시간 운전시에 이온 복합막은 막표면에 있는 금속 counterion이 feed에 씻겨버리기 때문에 분리능의 급격한 감소를 띠게 된다. counterion이 유기물일 경우에는 막속으로 확산되어 우기농축물에 포함될 문제가 있다. counterion이 고분자이면, 막 효능의 안정성이 증가되지만 막 제조과정이 다소 어려워진다. 아크릴산과 스티렐폰산을 포함하고 있는 개질 PAN막을 이용한 피리딘 수용액의 탈수에 관한 이전의 연구에서, 피드내의 피리딘과 막내의 산 기능기 사이에 형성된 in-situ complex가 막의 투과물사이에 특별한 반응이 없거나 막과 주요 투과 물간에 수소결합이 있는 막보다 더 좋은 탈수 효능을 나타냄이 확인되었다. 본 연구에서는 포스페이트를 함유하고 있는 폴리아크릴로니트릴 막의 제조와 피리딘 수용액의 탈수 효능에 대해 언급할 것이다.

  • PDF

Gas Separation by Polyimide.Silica Composite Membrane (폴리이미드/실리카 복합막에 의한 가스분리)

  • 송병준;김건중;남세종
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.71-72
    • /
    • 1997
  • 1. 서론 : 공기중의 산소분리용 고분자막은 높은 선택도를 동시에 요구한다. 이 두가지 조건을 만족시키는 소재 개발과 기존의 고분자물질을 수식하는 연구가 진행되고 있다. 고분자막에 대한 수식방법으로는 UV처리, plasma처리등이 있으나, 이들 방법은 선택도는 증가시키나 투과도를 감소시키는 경향이 있다. 기체의 투과저항을 줄이기 위하여 다공성 지지체 위에 박막을 입힌 복합막과 박막의 skin layer와 sub-layer를 갖는 비대칭막은 투과저항을 줄일수 있으나 선택도는 고분자 고유의 80%정도까지 감소되는 것으로 알려졌다. 본 연구의 목적은 고분자 복합막의 투과분리특성을 향상시키기 위한 것으로 지지층의 세공과 표면에 실리카/고분자를 충전, 피복시켜 투과분리특성을 조사하였다. 현재까지의 연구는 낮은 투과계수와 높은 선택도를 갖는 고분자물질이 사용되었으나, 본 연구에서는 폴리이미드로는 폴리이미드 중에서 투과계수가 가장 높다고 알려진 6FDA-p-TeMPD[{(3,3',4,4'-dicarboxyphenyl)hexafluoropropanedianhydride}-{2,3,5,6-Tetra-methyl-1,4-phenylenediamine}] 폴리이미드를 택하였으며 다공성지지체는 aluminum oxide를 사용하였다 . 본 실험에서는 선택도와 투과속도에 주로 영향을 미치는 폴리이미드와 실리카의 양에 대하여 고찰하였다.

  • PDF

Study of Surface Properties on Fouling Resistance of Reverse Osmosis Membranes (역삼투 분리막 표면 특성의 내오염성 상관 관계 연구)

  • 김노원
    • Membrane Journal
    • /
    • v.12 no.1
    • /
    • pp.28-40
    • /
    • 2002
  • The primary objective of this study is to elucidate the contribution of the electrostatic and molecula structural properties of an active layer of the thin film compsite (TFC) membranes to fouling tendency. The studies of surface morphology and surface charge were very effective in understanding fouling behaviors of the reverse osmosis (RO) membranes which were the thin film composite type of ployamide. Results of microscopic morphology analyzed by atomic force microscopy (AFM) and surface charge analyzed by electrokinetic analyzer (EKA) showed important factors affecting the fouling of RO membranes. The active layer of the composite membrane possessing realtively neutral streaming charge and less roughness provided a RO membrane with slowly decreasing flux.

Sulfonated Polystyrene/PTFE Composite Membranes for Direct Methanol Fuel Cell (직접 메탄올 연료전지를 위한 술폰화 폴리스티렌/테플론 복합막 제조 및 특성연구)

  • 김정훈;신정필;박인준;이수복;서동학
    • Membrane Journal
    • /
    • v.14 no.2
    • /
    • pp.173-184
    • /
    • 2004
  • For the application of direct methanol fuel cell (DMFC), sulfonated polystyrene/teflon (PS/PTFE) composite membranes were developed by changing monomer ratio of styrene and DVB. The composite membranes were prepared as follows: first, the monomer mixtures consisting of styrene, divinyl benzene and AIBN were impregnated in porous PTFE film and then, polymerized under 8$0^{\circ}C$ to give PS/PTFE membranes. Finally, the membranes were reacted with chlorosulfonic acid in 1,2-dichloroethane to give the sulfonated composite membranes. The measurements of ATR-FTIR, SEM, solvent uptake test and ion exchange capacity (IEC) were done for the resulting membranes before or after sulfonation, respectively, which showed the composite membranes with proper crosslinking degree and sulfonic acid content were prepared well as a function of styrene/DVB ratio. ion conductivity and methanol permeability were studied for the sulfonated membranes. It was found that with decreasing the ratio of styrene/DVB, methanol permeability decreased from $6.6{\times}10^{-7}∼1.3{\timas}10^{-7}$ $\textrm{cm}^2$/s, which are much lower values than that of Nafion$^{(R)}$117($1.02{\times}10^{-6}$ $\textrm{cm}^2$/s). Under the same monomer condition, ion conductivity decreased from 0.11 S/cm ($25^{\circ}C$) to 0.08 S/cm ($25^{\circ}C$), which are similar or a little higher values compared with $Nafion^{(R)}117 (1.02{\times}10^{-6}$ $\textrm{cm}^2$/s, 0.0824 S/cm). These two results confirmed the composite membranes prepared could be applied successfully to DMFC.C.