• Title/Summary/Keyword: 복합 막

Search Result 778, Processing Time 0.025 seconds

Synthesis of Silica/Alumina Composite Membrane Using Sol-Gel and CVD Method for Hydrogen Purification at High Temperature (Sol-gel 및 CVD법을 이용한 고온 수소 분리용 silica/alumina 복합막의 합성)

  • 서봉국;이동욱;이규호
    • Membrane Journal
    • /
    • v.11 no.3
    • /
    • pp.124-132
    • /
    • 2001
  • Silica membranes were prepared on a porous ${\alpha}$-alumina tube with pore size of 150nm by sol-gel and chemical vapor deposition(CVD) method for hydrogen separation at high temperatures. Silica and ${\gamma}$-lumina membranes formed by the sol-gel method possessed a large amount of mesopores of a Knudsen diffusion regime. In order to improve the $H_2$ selectivity, silica was deposited in the sol-gel derived silica/${\gamma}$-alumina layer by thermal decomposition of tetraethyl orthosilicate(TEOS) at $600^{\circ}C$. The CVD with forced cross flow through the porous wall of the support was very effective in plugging mesopores that were left unplugged in the membranes. The CVD modified silica/alumina composite membrane completely rejected nitrogen permeation and thus showed a high $H_2$ selectivity by molecular sieve effect. the permeation of hydrogen was explained by activated diffusion and the activation energy was 9.52kJ/mol.

  • PDF

세라믹막의 $CO_2$ 분리계수

  • 현상훈;강범석;조상연
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.04a
    • /
    • pp.57-57
    • /
    • 1994
  • 졸-겔 침지코팅 (dipcoating) 또는 가압 졸-겔 코팅 (pressurized coating) 법으로 제조한 $\gamma-Al_2O_3, SiO_2, TiO_2$ 및 aluminosilicate 복합막에 대하여 $CO_2$, He, $N_2$, 및 $O_2$ 기체 투과율과 $CO_2$ 분리계수를 측정하였다. 이들 막을 통한 모든 기체의 이동은 Knudsen 유동이 지배적이었으며 $CO_2/N_2$의 분리계수는 0.9 ~ 1.1 정도로 Knudsen 분리계수 ($CO_2/N_2$의 경우 0.8)보다 약간 높은 값을 보여주었다. $CO_2$ 분리계수를 향상시키기 위하여 silane coupling 및 산화물 도핑법에 의한 복합막의 표면개질을 시도하였으며 분리막의 재질 및 표면개질 조건에 따른 $CO_2/N_2$ 분리계수 변화를 측정 비교하였다. Silane coupling에 의한 표면개질이 $CO_2$의 표면 친화성 (affinity)에 의한 표면확산속도를 증가시키기 때문에 $CO_2$ 분리에 있어서 산화물 도핑에 의한 표면개질보다 더욱 효과적이었다.

  • PDF

화학증착법으로 제조한 실리카/알루미나 복합막의 기체분리특성과 stability에 관한 연구

  • 김성일;하홍용;남석우;홍성안;김인원
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.04b
    • /
    • pp.27-28
    • /
    • 1997
  • 최근 들어 분리공정의 발달과 산업의 고도화에 따라 기체 및 액체분리의 중요성이 강조되면서 열적, 화학적 그리고 기계적 안정성이 좋으며, 수명이 길고, 세척과 재생이 용이하며, 미생물에 의한 손상이 없는 무기막에 대한 연구가 진행중이다. 무기막은 기공의 크기에 따라 크게 다공성 막과 비다공성 막의 두 종류로 구분된다. 비다공성 금속막은 특정 기체에만 투과성을 가지며, 이때 기체는 용해-확산(solution-diffusion)기구에 의해 금속막을 투과하므로 특정기체에 대한 선택도는 매우 크나 투과도가 매우 작고 가격이 비싼 단점을 가지고 있다. 다공성 막은 기체 투과율이 큰 반면 기체 선택도가 작은 단점을 가지고 있다. 현재 기체분리에 사용되고 있는 무기막은 기공크기가 40${\AA}$ 이상으로 기체 분리가 Kundsen diffusion에 의해 이루어지므로, 기체 투과도는 큰 반면에 기체에 대한 선택도는 그리 크지 않다. 따라서 최근 들어서는 다공성 담체에 기공이 작은 ($d_{pore}<20{\AA}$)박막을 담지시켜 기체의 분리 선택도를 향상시키기 위한 연구가 활발히 이루어지고 있다. 본 연구에서는 유기금속 화학증착법(metal-organic chemical vapor deposition:MOCVD)을 이용하여 수소 선택성을 가지는 $SiO_2/Al_2O_3$ 복합막을 비율별로 제조하여 증착속도를 알아보고, 열과 수분에 노출시켜 박막의 기체투과도 변화를 살펴보았다.

  • PDF

Development of Composite Hollow Fiber Membranes for Olefin Off-gas Recovery (올레핀 배가스의 분리를 위한 중공사형 복합막의 개발)

  • Kim Jeong-Hoon;Choi Seung-Hak;Lee Soo-Bok
    • Membrane Journal
    • /
    • v.15 no.2
    • /
    • pp.157-164
    • /
    • 2005
  • In this study, composite hollow fiber membranes were developed for the recovery of olefin monomers in polyolefin industry off-gases. Polyetherimide (PEI) hollow fiber support membranes were fabricated from spinning solutions containing PEI, NMP and polyethylene glycol (PEG). The influence of dope solution and inner coagulant composition on the permeation properties and structure of hollow fiber supports was examined. PDMS was used as a selective layer and coated on PEI hollow fiber support. The thickness of active layer was controlled by changing coating solution concentration. The permeation properties of hollow fiber supports and composite membranes were characterized with a pure gas permeation test. The optimized composite hollow fiber membrane has $10\;{\mu}m$ selective layer and shows excellent separation performance; the ideal selectivity of olefins over nitrogen is in the following order: 1-butylene (6.4) > propylene (17) > ethylene (97), which selectivity data are similar to the intrinsic olefin/nitrogen selectivities of PDMS. This confirms that the new composite hollow fiber membranes suitable for olefin off-gas recovery has developed successfully.

Thin-Film Composite (TFC) Membranes with Hydrophilic Ethyl Cellulose-g-poly(ethylene glycol) (EP) Substrates for Forward Osmosis (FO) Application (친수성을 가지는 에틸셀룰로스-폴리에틸렌글리콜 가지형 고분자의 정삼투 복합막 지지층으로의 응용)

  • Yu, Yun Ah;Kim, Jin-joo;Kang, Hyo;Lee, Jong-Chan
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.510-518
    • /
    • 2016
  • Ethyl cellulose-g-poly(ethylene glycol) (EP) was synthesized by esterification of carboxylic acid functionalized methoxy polyethylene glycol (MPEG-COOH) with ethyl cellulose (EC) in order to develop a hydrophilic substrate for thin-film composite (TFC) membrane in a forward osmosis (FO) system. A porous EP substrate, fabricated by a non-solvent induced phase separation method, was found to be more hydrophilic than the EC substrate due to the presence of polyethylene glycol (PEG) side chains in the EP. Since the EP substrate exhibits smaller water contact angles and higher porosity, the structural parameter (S) of TFC-EP is smaller than that of TFC-EC, indicating that internal concentration polarization (ICP) within porous substrates can occur less when TFC-EP is used as a membrane. For example, the water flux value of the TFC-EP is 15.7 LMH, whereas the water flux value of the TFC-EC is only 6.6 LMH. Therefore, we strongly believe that the TFC-EP could be a promising candidate with good FO performances.

Gas Permeation Characteristics of CO2 and N2 through PEBAX/ZIF-8 and PEBAX/amineZIF-8 Composite Membranes (PEBAX/ZIF-8과 PEBAX/amineZIF-8 복합막을 통한 CO2와 N2의 기체투과 특성)

  • Hong, Se Ryeong;O, So Young;Lee, Hyun Kyung
    • Membrane Journal
    • /
    • v.30 no.6
    • /
    • pp.409-419
    • /
    • 2020
  • In this study, PEBAX/ZIF-8 and PEBAX/amineZIF-8 composite membranes were prepared according to the content of zeolitic imidazolate framework-8 (ZIF-8), amine-modified ZIF-8 (amineZIF-8), the gas permeability properties of N2 and CO2 were investigated for each composite membrane. In the case of the PEBAX/ZIF-8 composite membrane, the permeability of N2 and CO2 increased as the ZIF-8 content increased, and in the case of the PEBAX/amineZIF-8 composite membrane, the permeability of N2 and CO2 increased up to 20 wt% of amineZIF-8, but decreased at the higher content. CO2/N2 ideal selectivity increased up to 20 wt% of ZIF-8 and amineZIF-8 contents in both PEBAX/ZIF-8 and PEBAX/ amineZIF-8 composite membranes, and then decreased thereafter, in the case of PEBAX/amineZIF-8 composite membrane was less decreased. The reason for the highest CO2/N2 ideal selectivity at 20 wt% of amineZIF-8 is that amine modification improved the compatibility between PEBAX and amineZIF-8, and thus amineZIF-8 was evenly dispersed in PEBAX, resulting in the greatest effect of the porous ZIF-8 with a 3.4 Å pore size and the amine with affinity for CO2.

Gas Permeation Characteristics through Chitosan-HNT Composite Membrane (Chitosan-HNT 복합막을 이용한 기체 투과특성에 관한 연구)

  • Lee, Seul Ki;Hong, Se Ryeong
    • Membrane Journal
    • /
    • v.24 no.5
    • /
    • pp.358-366
    • /
    • 2014
  • Chitosan-HNT (halloysite nanotube) composite membranes were prepared by the addition of HNT 0, 3, 5, and 10 wt%. The structure of composite membranes were studied by FT-IR, XRD, TGA, and SEM. Gas permeation experiment were performed under condition of $30^{\circ}C$ and $4kgf/cm^2$. Gas permeability and selectivity were investigated by increasing the amount of HNT contents in the chitosan. Chitosan-HNT composite membrane for $CO_2$ and $CH_4$ showed the maximum value at 3 wt% of HNT content and decreased thereafter. The selectivity of ($CO_2/CH_4$) was increased due to its affinity with the OH groups on the HNT, was shown in the range of 1.3 to 3.8 at 0~10 wt%.

Separation of $C_3H_6/C_3H_8$ by PEBAX-NaY Zeolite Composite Membranes (PEBAX-NaY Zeolite 복합막에 의한 $C_3H_6/C_3H_8$ 분리에 관한 연구)

  • Kim, Seul-Gi;Lee, Hyun-Kyung
    • Membrane Journal
    • /
    • v.25 no.1
    • /
    • pp.42-47
    • /
    • 2015
  • In this study, PEBAX[poly(ether-block-amide)]-NaY zeolite composite membranes were prepared, and those prepared membranes were studied on permeability of $C_3H_6$ and $C_3H_8$, and selectivity ($C_3H_6/C_3H_8$). NaY zeolite particles in PEBAX-NaY zeolite composite membranes was dispersed as aggregated particles with the size $0.5{\sim}2.5{\mu}m$ by SEM observation. TGA measurement showed the weight loss change resulted from the amount of NaY zeolite when NaY zeolite was added into PEBAX. By gas permeation experiment, the permeabilities of $C_3H_6$ and $C_3H_8$ were decreased by the more addition NaY zeolite in PEBAX. Overall, $C_3H_6$ was having higher permeability than $C_3H_8$. The selectivity $C_3H_6/C_3H_8$ was decreased by the more NaY zeolite in PEBAX.

Pore Structure and Separation Properties of Thin Film Composite Forward Osmosis Membrane with Different Support Structures (지지층 구조가 다른 복합 정삼투막의 기공구조와 분리 특성)

  • Ahn, Soo-Hyun;Kim, In-Chul;Song, Doo-Hyun;Jegal, Jonggeon;Kwon, Young-Nam;Rhee, Hee-Woo
    • Membrane Journal
    • /
    • v.23 no.3
    • /
    • pp.251-256
    • /
    • 2013
  • In this study, acetylated methyl cellulose (AMC) was successfully used as a support layer of thin film composite (TFC) forward osmosis (FO) membrane. A selective polyamide active layer, interfacially polymerized, was coated on top of various substrate layers. The structure and performance of the TFC FO membrane based on the AMC substrate were compared with those of TFC FO membranes with different polymeric support layers. The experimental results showed that the AMC FO membrane performance was better than other FO membranes due to its characteristic morphology and lower back diffusion rate of salts.

Preparation and Characterizations of Sulfonated Graphene Oxide (sGO)/Nafion Composite Membranes for Polymer Electrolyte Fuel Cells (고분자 전해질막 연료전지(PEMFCs)용 Sulfonated Graphene Oxide (sGO)/Nafion 복합막의 제조 및 특성분석)

  • Shin, Mun-Sik;Kang, Moon-Sung;Park, Jin-Soo
    • Membrane Journal
    • /
    • v.27 no.1
    • /
    • pp.53-59
    • /
    • 2017
  • In this study, the composite membranes prepared by sulfonated graphene oxide (sGO) and Nafion were developed as proton exchange membranes (PEMs) for polymer electrolyte membrane fuel cells (PEMFCs). The sGO/Nafion composite membranes were prepared by mixing Nafion solution with the sGO dispersed in a binary solvent system to improve dispersity of sGO. The composite membranes were investigated in terms of ionic conductivity, ion exchange capacity (IEC), FT-IR, TGA and SEM, etc. As a result, the binary solvent system, i.e., ortho-dichlorobenzene (ODB) and N,N-dimethylacetamide (DMAc), were used to obtain high dispersion of sGO particles in Nafion solution, and the ionic conductivity of the sGO/Nafion composite membrane showed $0.06Scm^{-1}$ similar to other research results at lower water uptake, 11 wt%.