• Title/Summary/Keyword: 복합형 레이저

Search Result 40, Processing Time 0.029 seconds

Optical and Structural Characteristics of Europium Doped Organic-Inorganic Hybrid Film by Sol-Gel Process (졸겔 공정을 이용하여 Europium을 doping한 유기-무기 복합막의 광학적 및 구조적 특성)

  • 김진균;오동조;김유항;황진명
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.106-106
    • /
    • 2003
  • 최근 집적형 광소자, 레이저 재료, 자료 저장 또는 통신 기술부문에서 제어된 광학적 성질을 갖는 유기-무기 나노 복합체를 만드는 연구가 많은 관심과 주목을 받고 있다. 유기물인 PEG는 대다수의 금속염을 고정시키는 용매 역할을 하는 polymer로써 액체와 같은 특징을 나타내며 무기물인 silica의 network는 순수한 PEG 시스템보다 좋은 기계적 물성을 나타내며, 투명한 물질을 얻을 수 있게 해 준다. 이에 본 연구에서는 SiO2-PEG의 matrix에 우수한 광학적 성질을 지닌 europium을 doping하여 유기-무기 나노 복합막을 합성하여 europium의 농도와 PEG 분자량에 따른 구조적 및 광학적 성질을 알아보고자 한다.

  • PDF

SEM EVALUATION AND SHEAR BOND STRENGTH OF ER : YAG LASER IRRADIATION ON ENAMEL SURFACE (Er : YAG 레이저 조사가 법랑질 표면 변화와 전단강도에 미치는 영향)

  • Lim, Hyoung-Soo;Lee, Chang-Seop;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.3
    • /
    • pp.374-382
    • /
    • 2001
  • The purpose of this study was to investigate the surface morphology and measure shear bond strength of Er : YAG lased enamel. To determine the most effective energy density of laser for improving bonding strength of human enamel, 24 specimen were lased from 30mJ to 150mJ at 1Hz used focused, defocused beam. After irradiation, the lased specimen were observed scanning electron microscope. To determine the resin shear bond strength of Er : YAG lased enamel, the 90 specimen were divided into 3 groups. The Control group was etched with 37% phosphoric acid for 15seconds and rinsed. Group 1 was only laser irradiaton(60mJ, 10Hz), Group 2 was irradiated as Group 1 regimen, followed 37% phosphoric acid etching. The following results were obtained: 1. In both focused and defocused Er : YAG lased enamel surface are similar to acid-etched enamel more than 60mJ in SEM evaluation. 2. The more increased laser energy, the more observed fissuring surface. 3. The highest mean shear bond strength value was observed in control group with the statistical significance(p<0.05) between all the other groups and the shear bond strength in group 1 was the lowest with significant difference among the other groups.

  • PDF

A Development of Small-diameter Composite Helical Spring Structure for Reinforcement of Fiber Splice (광섬유 융착 부위 중접용 미소 직경 복합재료 스프링 구조물 개발)

  • 윤영기;정승환;이우일;이병호;윤희석
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.26-32
    • /
    • 2003
  • Optical fibers, for splice, are stripped of their plastic coatings with a plastic stripper and cut off at the end. Therefore, stripped fibers often receive accidental damages and sustain small flaws or cracks. As a result, the breaking strength of a fiber splice made under normal conditions is reduced to about 0.4∼1 ㎏ on the average, nearly one-tenth of the fiber's strength. This makes it necessary to reinforce the splice. One of the most practical and reliable methods for optical fiber splicing is fusion splicing, comprising the steps of tripping the plastic coatings from the two fiber ends to be splice, placing the two bare fiber ends in an end-to-end position, and of fusion splicing, such as are fusion. Generally, steel bar (SB) sleeve is used to reinforce this fusion-splicing region. However, this type of sleeve has a critical defect to keep optical lose after bent by a sudden load. New type of composite spring (CS) sleeve is developed to make up for the weak points in the SB sleeve. This sleeve has an effect on restoration to the original state after eliminating the bending load. The optical spectrum analyzes results show the availability of reinforcement for the fusion splicing optical fiber using small diameter composite springs under the various loading conditions.

Thermal Diffusivity of PEEK/SiC and PEEK/CF Composites (PEEK/SiC와 PEEK/CF 복합재료의 열확산도에 대한 연구)

  • Kim, Sung-Ryong;Yim, Seung-Won;Kim, Dae-Hoon;Lee, Sang-Hyup;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.9 no.3
    • /
    • pp.7-13
    • /
    • 2008
  • The particulate type silicon carbide (SiC) and fiber type carbon fiber (CF) filler, of similar thermal conductivities, were mixed with polyetheretherketone (PEEK) to investigate the filler effects on the thermal diffusivity. The SiC and CF fillers had a good and uniform dispersion in PEEK matrix. Thermal diffusivities of PEEK composites were measured from ambient temperature up to $200^{\circ}C$ by laser flash method. The diffusivities were decreased as increasing temperature due to the phonon scattering between PEEK-filler and filler-filler interfaces. Thermal diffusivity of PEEK composites was increased with increasing filler content and the thermal conductivities of two-phase system were compared to the experimental results and it gave ideas on the filler dispersion, orientation, aspect ratio, and filler-filler interactions. Nielson equation gave a good prediction to the experimental results of PEEK/SiC. The easy network formation by CF was found to be substantially more effective than SiC and it gave a higher thermal diffusivities of PEEK/CF than PEEK/SiC.

  • PDF

A study on the application of optical fiber sensors to smart composite structures (지능형 복합재 구조물에 대한 광섬유센서의 적용에 관한 연구)

  • Jang, Tae-Seong;Kim, Ho;Lee, Jung-Ju
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.6
    • /
    • pp.15-24
    • /
    • 1996
  • In this study, as a part of the basic study for the application of optical fiber sensors to smart composite structures, the integrity of optical fiber sensors embedded within the composite structures was examined and then the laser signal transmitted through optical fiber sensors during the deformation of host structures was investigated. Firstly, it was found that bending test could be substituted for tensile test by comparing cumulative failure distribution based on weakest link theory and introducing the correction factor. Weibull parameters were obtained through the experiments and the correction factor was found to be applied to cumulative failure distribution derived from bending test. The integrity of embedded optical fiber sensors due to the thermal effect was evaluated by the comparison of the mean tensile strengths of cured and uncured optical fibers. Secondly, relationships between stress-strain curve obtained in tensile test of composite laminate and the intensity of laser signal transmitted through embedded optical fibers were examined and the possibility of the effective damage detection using optical fiber sensors was studied.

  • PDF

Mask Patterning for Two-Step Metallization Processes of a Solar Cell and Its Impact on Solar Cell Efficiency (태양전지 2 단계 전극형성 공정을 위한 마스크 패턴공정 및 효율에 대한 영향성 연구)

  • Lee, Chang-Joon;Shin, Dong-Youn
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.11
    • /
    • pp.1135-1140
    • /
    • 2012
  • Two-step metallization processes have been proposed to achieve high-efficiency silicon solar cells, where the front-side grids are formed by silver plating after the formation of a nickel seed layer with a mask. Because the conventional mask patterning process is performed by an expensive selective printing method using either UV resist or phase change ink, however, the combination of a simple coating and laser-selective ablation processes is proposed in this study as an alternative means. As a masking material, the solar cell wafer was coated with either inexpensive wax having a low melting temperature or a fluorocarbon solution, and then, an electrode image was patterned by selectively removing the masking material using the laser. It was found that the fluorocarbon coating was not only superior to the wax coating in terms of pattern uniformity but it also increased the efficiency of the solar cell by 0.16%, as confirmed by statistical f and t tests.

A Filter Design for Reducing Altitude Measurement Errors Arising during Aircraft Landing (항공기 착륙 시에 발생하는 고도측정 오차 개선을 위한 필터설계)

  • Song, Dae-Bum;Lim, Sang-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.3 no.2
    • /
    • pp.97-107
    • /
    • 1999
  • Passive sensors such as Laser Range Finder(LRF) and Forward Looking Infrared(FLIR) camera frequently used for tracking aircraft landing produce the measurements of elevation angle contaminated by large noise due to the exhaust plume disturbance. This results in poor tracking performance if the extended Kalman filter is used for estimation of the range and elevation which are corrupted by the non-Gaussian noise such as plume disturbance. In this paper, an adaptive estimation filter and the extended Kalman filter is combined to produce a combination-type filter. In this approach the adaptive filter is used for the plume-type disturbance noise and the extended Kalman filter is utilized for the measurement of Gaussian type. The proposed combination filter is effective for the trajectory estimation of landing aircraft under the influence of unknown bias and numerical simulations illustrate the performance of the proposed filter.

  • PDF

Damage Visualization of Filament Wound Composite Hydrogen Fuel Tank Using Ultrasonic Propagation Imager (초음파전파영상화 시스템을 이용한 필라멘트 와인딩 복합재 수소 연료 탱크의 손상 가시화)

  • Lee, Jung-Ryul;Jeong, Hyomi;Chung, Truong Thanh;Shin, Hejin;Park, Jaeyoon
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.143-147
    • /
    • 2015
  • This paper proposes laser ultrasonic technique for the impact damage inspection of hydrogen fuel tank and proves that the impact damage can be visualized using an ultrasonic wave propagation imager with an easy detachable sensor head as an impact damage inspection tool for hydrogen fuel tanks. Also the performances of the proposed ultrasonic propagation imager support it can be implemented in real-world technology when the hydrogen car becomes popular.

Fabrication of Functionally Graded Materials Between P21 Tool Steel and Cu by Using Laser-Aided Layered Manufacturing (레이저 적층조형을 이용한 P21 툴 스틸과 Cu 간 기능성 경사 복합재의 제작)

  • Jeong, Jong-Seol;Shin, Ki-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.61-66
    • /
    • 2013
  • With the development of layered manufacturing, thermally conductive molds or molds embedding conformal cooling channels can be directly fabricated. Although P21 tool steel is widely used as a mold material because of its dimensional stability, it is not efficient for cooling molds owing to its low thermal conductivity. Hence, the use of functionally graded materials (FGMs) between P21 and Cu may circumvent a tradeoff between the strength and the heat transfer rate. As a preliminary study for the layered manufacturing of thermally conductive molds having FGM structures, one-dimensional P21-Cu FGMs were fabricated by using laser-aided direct metal tooling (DMT), and then, material properties such as the thermal conductivity and specific heat that are related to the heat transfer were measured and analyzed.

Fabrication and Electromechanical Behaviors of a SWNT/PANi Composite Film Actuator (탄소나노튜브/도전성폴리머 복합재 엑츄에이터의 제조 및 특성실험)

  • Zhang, Shuai;Kim, Cheol
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.7-11
    • /
    • 2006
  • The improved SWNTs/PANi composite actuator films applicable to an artificial muscle were fabricated successfully using a new process of manufacture that consists of 90% pure single-walled carbon nanotubes (SWNT) and chemical polymerization. PANi is electrically conducting polyaniline polymer. The conductivities of the composite SWNTs/PANi film-type actuators and the pure PANi films fabricated were measured as 56.15 S/cm and 17.38 S/cm, respectively, by the 4-prove method. The conductivity of the composite actuator is 3.2 times higher than the pure PANi film. The fabricated composite actuator showed higher conductivity than any other similar ones. The quality of samples was investigated by an electron scanning microscope (SEM). To measure the actuating strains, a specially designed beam balance apparatus was developed and strains of the composite actuators was measured by a laser displacement sensor subjected to electric currents. During the operation, the sample was soaked in the $NaNO_3$ solution and the sine-wave voltage in the range of $+1V{\sim}-1V$ was applied. The length of the composite actuator changed from $l_0=12.690$ mm to $l_1=12.733$ so that the change of length was l=0.043 mm and the strain was 0.34 %. This is a very high strain for this kind of a composite actuator. Other result reported by Tahhan showed 0.23 % strain, so that the present result is improved by 48%.