• Title/Summary/Keyword: 복합주파수

Search Result 452, Processing Time 0.028 seconds

Dynamic Property Evaluation of Four-Harness Satin Woven Glass/epoxy Composites for a Composite Bogie Frame (복합소재 대차프레임용 4매 주자직 유리섬유/에폭시 복합소재의 진동특성평가)

  • Kim, Il Kyeom;Kim, Jung Seok;Seo, Sung Il;Lee, Woo Geun
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • In this study, the natural frequency and damping ratio of a four-harness satin woven glass/epoxy composite material are evaluated by means of modal tests and a finite element analysis. To achieve this goal, glass/epoxy beam specimens with different lengths and thicknesses were manufactured via autoclave curing. In the test, the maximum damping ratio was found to occur at the lowest test frequency. As the test frequency increased, the damping ratio decreased exponentially to a critical value. After that value, the damping ratio increased gradually to the maximum test frequency.

Design of High Speed Composite Air Spindle System (초고속 복합재료 공기정압 주축의 설계)

  • 장승환;이대길;한흥삼
    • Composites Research
    • /
    • v.14 no.1
    • /
    • pp.47-56
    • /
    • 2001
  • In order to enhance high speed stability the composite air spindle system composed of a high modulus carbon fiber composite shaft, powder contained epoxy composite squirrel cage rotor and aluminum tool holder was designed and manufactured. For the optimal design of the composite air spindle system, the stacking sequence and thickness of the composite shaft were selected by considering the fundamental natural frequency and deformation of the system. The analysis gave results that the composite air spindle system had 36% higher natural frequency relative to a conventional air spindle system. The dynamic characteristics of the composite spindle system were compared with those of a conventional steel air spindle system. From the calculated and test results, it was concluded that the composite shaft and the power contained composite rotor were able to enhance the dynamic characteristics of the spindle system effectively due to the low inertia and high speific stiffness of the composite materials.

  • PDF

Thermal Residual Stresses in the Frequency Selective Surface Embedded Composite Structures and Design of Frequency Selective Surface (주파수 선택적 투과막이 결합된 복합재료의 잔류응력평가 및 선택적 투과막 설계)

  • Kim, Ka-Yeon;Chun, Heoung-Jae;Kang, Kyung-Tak;Lee, Kyung-Won;Hong, Ic-Pyo;Lee, Myoung-Keon
    • Composites Research
    • /
    • v.24 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • In this paper, Particle Swarm Optimization(PSO) is applied to the design of the Frequency Selective Surface(FSS) and residual stresses of hybrid radome is predicted. An equivalent circuit model with Square Loops arrays was derived and then PSO was applied for acquiring the optimized geometrical parameters with proper resonant frequency. Residual stresses occur in the FSS embedded composite structures after cocuring and have a great influence on the strength of the FSS embedded composite structures. They also effect transmission quality because of delamination. Therefore, the thermal residual stresses of FSS embedded composite structures were analyzed using finite element analysis with considering the effects of FSS pattern, and composite stacking sequence.

Study on the numerical model of complex permittivity of composites based on the percolation theory (퍼콜레이션 이론에 기초한 복합재료의 복소 유전율 모델에 대한 연구)

  • Kim, Jin-Bong;Lee, Sang-Kwan;Kim, Chun-Gon
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.44-54
    • /
    • 2009
  • In this paper, we proposed a numerical model the complex permittivity for the E-glass fabric/epoxy composite laminate containing electrical conductive carbon black. The model is based on the percolation theory and for the composites over than the percolation threshold and in higher frequency band in that the AC conductivity is fully proportional to the frequency. The measurement for the complex permittivity wasperformed at the frequency band of 0.5 GHz $\sim$ 18.0 GHz using a vector network analyzer with a 7 mm coaxial air line. The proposed model is composed of the numerical equations of the scaling law used in percolation theory and constants obtained from experiments to quantify the model itself. The model describes the complex permittivity as the function of frequency and filler concentration. The model was verified by being compared with the measurements.

투포원 연사기의 진동해석 모델링 및 특성에 관한 연구

  • 김환국;전두환;정광섭
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.377-381
    • /
    • 1998
  • 섬유기계들의 많은 부분이 기계 내에 회전장치를 포함함으로써 기계진동 및 소음의 원인으로 작용하며, 그와 관련한 각 부품들 특유의 주파수 스펙트럼을 보이게 된다. 일반적으로 공진을 동반하는 소음이나 진동은 모든 주파수 대역에 걸쳐 균등하게 나타나는 것이 아니라 특정주파수대에 치중하여 나타나게 되며 각각의 기계요소들로부터 여러 성분들이 복합되어 나타나게 됨을 관찰할 수 있다. (중략)

  • PDF

Thermal Residual Stresses and Spring back Effects on the Frequency Selective Surface Embedded Composite Laminates (주파수 선택막이 삽입된 복합재 평판의 잔류 열응력과 스프링 백 효과)

  • Park, Kyoung-Mi;Seo, Yun-Seok;Chun, Heoung-Jae;Hong, Ic-Pyo;Park, Yong-Bae;Kim, Yun-Jae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.6
    • /
    • pp.475-481
    • /
    • 2013
  • The residual stresses occur in the Frequency Selective Surface(FSS) embedded hybrid composite structures after co-curing due to mismatch among the coefficient of thermal expansions and stiffness values between the FSS and composite materials. The spring backs occur due to these residual stresses. Therefore, in this paper, the spring-backs caused by residual stresses in FSS embedded composite structures were studied with considering effect of symmetric and unsymmetric stacking sequence of composite laminates.

Design of the acoustic element and case for the piezoelectric acoustic transducer (압전형 음향변환기의 음향소자 및 케이스의 설계)

  • Kim, Hyun-Chool;Go, Young-Jun;Nam, Hyo-Duk;Chang, Ho-Gyeong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.294-297
    • /
    • 2000
  • 본 연구에서는 압전형 음향변환기를 제작하기 위한 금속과 세라믹스로 적층된 원형의 압전음향소자와 음향변환기 케이스를 설계하였다. 먼저 음향소자인 복합원형평판의 진동운동 방정식을 세우고 그 진동모드를 알아보았다. 음향소자의 세라믹스는 두께 1 mm, 지름 10 mm의 PZT(IV)를 사용하였고, 금속판의 지름과 두께를 다양하게 변화시키면서 음향소자의 공진주파수를 계산하고, 각각의 금속판에 따른 감도지수의 변화를 계산하였다. 설계하고자 하는 음향소자의 공진주파수를 200 KHz로 청하고, 위의 계산을 통하여 음향변환소자에 가장 적합한 금속진동판을 찾아보았다. 음향변환기의 복합원형평판으로 이루어진 음향소자의 물리적 변화에 따른 공진주파수와 감도지수를 구하고 음향변환기 케이스의 공진주파수를 계산하여 압전형 음향변환기에 알맞은 금속진동판과 음향변환기 케이스를 알아보았다.

  • PDF

A Study on the Dielectric Properties of SBS/Conductive Filler/Dielectrics Composites for Phantom Model (팬텀 모델 제작을 위한 SBS/도전체/유전체 3상 복합재료의 유전특성 연구)

  • Kim, Yoon-Jin;Choi, Hyung-Do;Cho, Kwang-Yun;Yoo, Don-Sik;Yoon, Ho-Gyu;Suh, Kwang-Seok
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.98-107
    • /
    • 2001
  • Dielectric properties and shape memory characteristics of SBS composites filled with carbon black as conductive filler and (Ba,Ca)$(Sn,Ti)O_3$ or $SrTiO_3$ as dielectrics were investigated for the development of phantom model. SBS/carbon black composite showed an increment of complex dielectric constant with increasing the content of carbon black and the frequency dependence that the dielectric constant decreases with the frequency. The complex dielectric constant and the conductivity of SBS/carbon black/dielectrics composites increased with the increase of dielectrics and the characteristics of the frequency dependence also occurred by the effect of carbon black. Phantom materials with the dielectric properties and the conductivity corresponding to human tissues for the measurement of specific absorption rate(SAR) within the frequency range of current mobile phones(775MHz~2GHz) could be developed by adjusting the composition ratios of carbon black, dielectrics and SBS and by controlling the characteristic of frequency dependence of composite. From thermomechanical cycling test good shape recoverability could be obtained in SBS composite even though the residual strain was increased by the effect of filler.

  • PDF

Permittivities of the E-Glass Fabric/Epoxy Composite Laminates Containing Carbon Black Dispersion (카본 블렉을 함유한 복합재 적층판의 유전율)

  • 김진봉;김태욱
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.48-53
    • /
    • 2003
  • This paper presents a study on the permittivities of the I-glass fabric/epoxy composite laminates containing carbon black dispersions at microwave frequency. Measurements were performed at the frequency band of 5 GHz∼18 GHz. The results showed that the complex permittivities of the composites depend strongly on the natures and concentrations of the carbon black dispersion. A new scheme is proposed to obtain a mixing law for the estimation of the complex permittivities of the composite laminates as a function of concentration of carbon black. Simultaneously, the complex permittivity of carbon black itself was also calculated by the scheme. The experimental values of the complex permittivities of the composites were compared to those calculated.

The Design of Broadband Ultrasonic Transducers for Fish Species Identification - Bandwidth Enhancement of a Ultrasonic Transducer Using Double Acoustic Matching Layers- (어종식별을 위한 광대역 초음파 변환기의 설계 ( III ) - 이중음향정합층을 이용한 초음파 변환기의 대역폭 확장 -)

  • 이대재
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.1
    • /
    • pp.85-95
    • /
    • 1998
  • The broadband ultrasonic transducers have been designed to use in obtaining the broadband echo signals from fish schools in relation to the identification of fish species. The broadening of bandwidth was achieved by attaching double acoustic matching layers on the front face of a Tonpilz transducer consisted of an aluminum head, a piezoelectric ring, a brass tail and to evaluate the performance characteristics, such as the transmitting voltage response(TVR) of transducers. The constructed transducers were tested experimentally and numerically by changing the parameters such as impedances and thicknesses of the head, tail and matching layers, in the water tank. Also, the developed transducer was excited by a chirp signal and the received chirp waveforms were analyzed. According to the measured TVR results, the available 3 dB bandwidth of the transducer with double matching layers of an $Al_O_3/epoxy$ composite of 7 mm thick and a polyurethane window of 18 mm thick was 7.3 kHz with a center frequency of 38.8 kHz, and the maximum and the minimum values of the TVR in this frequency region were 135.7 dB and 132.7 dB re $1\;{\mu}Pa/V$ at 1 m, respectively. Also, the available 3 dB bandwidth of the transducer with double matching layers of an $Al_O_3/epoxy$ composite of 11 mm thick and a polyurethane window of 15 mm thick was 6.2 kHz with a center frequency of 38.6 kHz, and the maximum TVR value in the frequency region was 136.3 dB re $1\;{\mu}Pa/V$ at 1 m. Reasonable agreement between the experimental results and the numerical results for the TVR of the developed transducers was achieved. The frequency dependant characteristics of experimentally observed chirp signals closely matched to the measured TVR results. These results suggest that there is potential for increasing the bandwidth by varying other parameters in the transducer design and the material of the acoustic matching layers.

  • PDF