• Title/Summary/Keyword: 복합재 차체

Search Result 76, Processing Time 0.018 seconds

Fatigue Fracture Assessment of Honeycomb Composite Side-Wall Panel Joint for the KTX Tilting Car Body (틸팅차량용 KTX 차체의 하니컴복합재 측벽판 체결부의 피로파괴평가)

  • Jeong, Dal-Woo;Kim, Jung-Seok;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.55-60
    • /
    • 2010
  • The honeycomb composite joint structure designed for application to a tilting KTX railroad car body is subjected to bending loads of a cantilever type. Honeycomb sandwich composite panel-joint attached in the real tilting car body was fabricated and sectioned as several beam-joint specimens for the bending test. The fracture behaviors of these specimens under static loads were different from those under cyclic loads. Static bending loads caused shear deformation and fracture in the honeycomb core region, while fatigue cyclic bend loading caused delamination along the interface between the composite skin and the honeycomb core, and/or caused a fracture in the welded part jointed with the steel under-frame. These fracture behaviors could occur in other industrial honeycomb composite joints with similar sub-structures, and be used for improving design parameters of a honeycomb composite joint structure.

A Study on Lightweight Design of Double Deck High-Speed Train Hybrid Carbody Using Material Substitution and Size Optimization Method (소재대체법과 치수최적화 기법을 이용한 2층 고속열차 하이브리드 차체 구조물의 경량 설계 연구)

  • Im, Jae-Moon;Jung, Min-Ho;Kim, Jong-Yeon;Shin, Kwang-Bok
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.29-36
    • /
    • 2019
  • The purpose of this paper is to suggest a lightweight design for the aluminum extrusion carbody structure of a double deck high-speed train using material substitution and size optimization method. In order to conduct material substitution, the topology optimization was used to determine the application parts of sandwich composites at the carbody structures. The results of analysis showed that sandwich composites could be applied at roof and 2nd underframe. The size optimization was used to determine thickness of the aluminum extruded and carbon/epoxy composite. The design variable, state constraint and objective function were formulated to solve the size optimization, and then, the feasible design was presented by these conditions. The results of the lightweight design showed that the weight of double deck high-speed train hybrid carbody could be reduced by 2.18(17.70%) tons.

A Study on Structural Test and Derivation of Standard Finite Element Model for Composite Vehicle Structures of Automated People Mover (자동무인경전철 복합재 차체 구조물의 구조 시험 및 해석적 검증에 의한 유한요소 모델 도출 연구)

  • Ko, Hee-Young;Shin, Kwang-Bok;Kim, Dae-Hwan
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.1-7
    • /
    • 2009
  • The vehicle structure of Automated People Mover(APM) made of aluminum honeycomb sandwich with WR580INF4000 glass-fabric epoxy laminate facesheets was evaluated by structural test and finite element analysis. The test of the vehicle structure was conducted according to JIS E 7105. The structural integrity of vehicle structure was evaluated by stress, deflection and natural frequency obtained from dial-gauge and acceleration sensor. And the proposed finite element models were compared with the results of structural test. The results of finite element analysis showed good agreement with those of structural test. Also, in order to improve the stiffness of vehicle structure, the modified underframe model with reinforced side sill was proposed in design stage. The composite vehicle structures with modified underframe model had the improved structural stiffness about 44%.

A Study on the Standardized Finite Element Models for Carbody Structures of Railway Vehicle Made of Sandwich Composites (샌드위치 복합재 적용 철도차량 차체 구조물의 표준유한요소모델 제시 연구)

  • Jang, Hyung-Jin;Shin, Kwang-Bok;Ko, Hee-Young;Ko, Tae-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.4
    • /
    • pp.382-388
    • /
    • 2010
  • This paper describes the standardized finite element model for carbody structures of railway vehicle made of sandwich composites. Recently, sandwich composites were widely used to railway vehicle due to the improvement of energy efficiency, high specific stiffness and strength, weight reduction and space saving in korea. Therefore, structural integrity should be verified using finite element analysis prior to the manufacture of composite railway vehicle. The standardized finite element model for composite carbody structures was introduced through comparing the results of real structural test under vertical, compressive, twisting load and natural frequency test of various railway vehicles in this study. The results show that the quadratic shell element is suitable to model the reinforced metal frame used to improve the flexural stiffness of sandwich panel compared to beam element, and layered shell and solid element are recommended to model the skin and honeycomb core of sandwich panel compared to sandwich shell element. Also, the proposed standard finite element model has the merit of being applied to crashworthiness problem without modifications of finite element model.

Study on Weight Reduction of Urban Transit Carbody Based on Material Changes and Structural Optimization (도시철도차량 차체의 경량화를 위한 소재 변경 및 구조체 최적화 연구)

  • Cho, Jeong Gil;Koo, Jeong Seo;Jung, Hyun Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1099-1107
    • /
    • 2013
  • This study proposes a weight reduction design for urban transit, specifically, a Korean EMU carbody made of aluminum extrusion profiles, according to size optimization and useful material changes. First, the thickness of the under-frame, side-panels, and end-panels were optimized by the size optimization process, and then, the weight of the Korean EMU carbody could be reduced to approximately 14.8%. Second, the under-frame of the optimized carbody was substituted with a frame-type structure made of SMA 570, and then, the weight of the hybrid-type carbody was 3.8% lighter than that of the initial K-EMU. Finally, the under-frame and the roof-panel were substituted with a composite material sandwich to obtain an ultralight hybrid-type carbody. The weight of the ultralight hybrid-type carbody was 30% lighter than that of the initial K-EMU. All the resulting carbody models satisfied the design regulations of the domestic Performance Test Standard for Electrical Multiple Unit.

저진동 차체 초기설계 및 해석기술 동향

  • 임홍재
    • Journal of KSNVE
    • /
    • v.3 no.1
    • /
    • pp.22-27
    • /
    • 1993
  • 이제까지 저진동 차체 설계에 관한 해석 및 설계기술에 대한 동향을 간략히 살펴보았다. 앞에서도 밝혔듯이 최근들어 차동차의 차체를 최적화 설계기법을 이용 하여 수많은 경우의 수에 대한 설계개선을 시도하는 것이 현실적으로 가능해졌다. 이와같은 최적화기법을 사용하여 설계과정이 전산화된다면 시험을 통해서만 가능하던 일련의 설계과정을 컴퓨터 시뮬레이션을 통하여 해결함으로써 설계에 소요되는 시간 을 파격적으로 단축시키고 아울러 더 좋은 설계를 만들어 낼 기회를 그만큼 더 증대 시킬 것이다. 요즈음 선진국의 자동차업계에서는 초기 차체 설계과정의 속도가 더 빨라지고 설계에 소요되는 시간은 줄어드는 경향이 있다. 그러나 자동차 설계가 점점 더 복잡하여져서 엔지니어가 설계를 최적화하기 위헤서는 어떤 단계가 필요한지를 알기가 점점 더 어려워지고 있다. 이제는 설계를 평가하는데 걸리는 시간보다는 설계 과정을 통제 및 관리하여 그 설계를 어떻게 잘 개선할 수 있는가 하는 것이 엔지니어 의 능력을 평가하는 데 더 중요한 기준이 될 것이다. 여기에서는 언급되지 않았지만 최근 들어와서 플라스틱, 알루미늄, 복합재 등 여러가지의 신소재들을 차체의 재료 로 사용하기 위한 연구가 활발히 검토되고 있거나 이미 실용화 단계에 와 있는 것도 있다. 이러한 신소재를 사용하여 저진동 차체를 설계하기 위해서는 새로운 제작 및 가공기술의 개발이 선행되어야 함은 물론이고 앞에서 서술한 해석 및 설계기술이 뒷받침 되어야 한다는 것은 두 말할 나위가 없겠다.

  • PDF

A Study on the Comparison of Structural Performance Test and Analysis for Design Verification of Bimodal Tram Vehicle Made of Sandwich Composites (샌드위치 복합재 적용 바이모달 트램 차체의 설계검증을 위한 구조 성능 시험 및 해석적 비교 연구)

  • Ko, Hee-Young;Shin, Kwang-Bok;Jeong, Jong-Cheol
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.518-525
    • /
    • 2009
  • This paper describes the evaluation of structural performance test and finite element analysis to verify the design of Bimodal Tram made of sandwich composites. The sandwich composite applied to vehicle structure was composed of a aluminum honeycomb core and WR580/NF4000 glass fabric/epoxy laminate composite facesheet. The load tests of vehicle structure were conducted for vertical load, compressive load, torsion and modal analysis according to JlS E 7105. The structural Integrity of vehicle was evaluated by the measurement of displacement, stress and natural frequency obtained from dial gauge, strain gauge and gravity sensor, respectively. And finite element analysis using ANSYS v11.0 was done to compare with structural test. The results showed that the displacement, stress and natural frequency were in an good agreement with those of structural analysis using the proposed finite element models.

The Evaluation of the Structural Strength to Check the Basic Design for the Composite Carbody of the Tilting Train (복합재 틸팅열차 차체 구조물의 기본설계 검증을 위한 강도 평가)

  • 신광복;박기진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.203-206
    • /
    • 2003
  • Using composite materials for the carbody of tilting train has many advantages such as manufacturing variety, specific high-strength & stiffness characteristics, and long-life durability, but the strongest advantage could be the possibility of lightweight product. In the leading countries, the composite materials are used for the material fur drivers'cabs, interior/exterior equipments for railway train, and it is now developing the composite materials applied for the train carbody structure. In this paper, we conducted the evaluation of structural stability for the aluminum and composite carbody of the Korean Tilting Train express(TTX) with the service speed of 180km/h.

  • PDF