• Title/Summary/Keyword: 복합재 손상

Search Result 269, Processing Time 0.033 seconds

Study on Impact Damage Behavior of Turbo Fan Engine Nacelle Sandwich Composite Structure (터보팬 엔진 나셀용 샌드위치 복합재 구조물의 손상 거동 연구)

  • Kong, Chang-Duk;Park, Hyun-Bum;Lee, Seung-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.75-78
    • /
    • 2007
  • In this study, low velocity impact analysis on Turbo Fan Engine composite sandwich structure was performed. Sandwich structure configuration is made of carbon/epoxy face sheets and foam cores. For validating study, the results of an experimental and of a Finite Element Method analysis were compared previously. From the Finite Element Method analysis results of sandwich panel, it was confirmed that the result of analysis was reasonable. Impactor velocity to initiate damage was estimated, and in order to investigate the damage at the predicted velocity, impact analysis using Finite Element Method was performed. According to the impact analysis results of sandwich panel, it was confirmed that the damage was generated at the estimated impact velocity.

  • PDF

하중방향에 따른 직물구조 CFRP의 손상에 대한 AE특성

  • 윤유성;이승현;권오현
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.05a
    • /
    • pp.360-365
    • /
    • 2003
  • 최근 선진국에서 차세대전투기와 고속철도차량 및 자동차 동체 등 경량화를 위해 복합재료의 사용범위가 증가되고 있다. 특히 강화재로서 섬유를 직물구조의 형태를 이용한 직물구조 CFRP 복합재료는 일방향 섬유에 비해 변형능력이나 기계적 특성이 우수하여 철근 콘크리트 구조물의 보강제와 같은 구조물 등에까지 그 사용이 확대되고 있다. 하지만 직물구조 CFRP 복합재료는 내부의 손상형태나 위치를 파악하기가 어렵고 직물구조의 복잡한 강화구조를 가지기 때문에 그 역학적 손상거동과 명확한 파괴거동 해석수법은 확립되어 있지 않다.(중략)

  • PDF

Prediction of Failure Behavior in Composite Motor Cases by Acoustic Emission during Hydroproof Testing (수압보증시험시의 음향방출에 의한 복합재 연소관의 파괴거동 예측)

  • Song, Sung-Jin;Oh, Chi-Hwan;Jeong, Hyun-Jo;Rhee, Sang-Ho;Lim, Soo-Yong;Kim, Ho-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.2
    • /
    • pp.92-102
    • /
    • 1998
  • Prediction of failure behavior in filament-wound composite motor cases is one of the important issues for their reliable application. Acoustic emission during hydroproof testing of the cases is used to solve this problem. Based on the acoustic emission behavior, failure sites can be located successfully. The identification of failure modes is also possible using the distribution of acoustic emission amplitude. Due to the limitation in the number of samples, it is not possible to predict the final burst pressure of motor cases and the effect of impact damage on the final burst pressure.

  • PDF

Fracture Toughness and AE Behavior of Impact-Damaged CFRP (탄소섬유복합재료의 충격 손상에 따른 파괴 인성과 AE 특성)

  • Lee, S.G.;Nam, K.W.;Oh, S.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.2
    • /
    • pp.81-88
    • /
    • 1997
  • Impact behavior of carbon fiber reinforced plastics (CFRP) laminates were evaluated with tension test and compact tension test. A steel ball launched by an air gun collides against CFRP laminates to generate impact damage of relatively low energy. The static tensile and fracture toughness tests were performed to evaluate the residual strength and the AE behavior of impact-damaged laminates. As a results, it was found that the static strength, the fracture toughness and the AE-event count were decreased with increasing of impact velocity and delamination area, and to have a different strength ratio and fracture toughness ratio for each stacking method. And also, it was confirmed that strength and fracture toughness of impact-damaged CFRP laminates could be evaluated and analyzed quantitatively by AE techniques.

  • PDF

Characterization of Healing Agent Candidates for Self-healing Applications (자가손상복구용 복구액의 특성 분석)

  • Liu, Xing;Lee, Jong-Keun;Kim, Jung-Seok
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1668-1673
    • /
    • 2008
  • 고분자 복합재 구조물의 경우 일반적으로 여러 층의 단층(laminar)이 적층된 구조로 이루어져 있으며, 모재균열, 층간분리 및 섬유파단과 같은 손상이 발생되어 파단에 이르게 된다. 자가손상 복구기법은 복합소재의 열경화성 수지 내에 손상복구액을 포함하고 있는 마이크로캡슐과 촉매를 투입하여 외부의 도움 없이 손상을 치료할 수 있는 방법으로, 소재의 디자인에 있어서 새로운 페러다임을 제공할 수 있는 것으로 현재 많은 연구가 진행되고 있다. 본 연구에서는 ENB(5-ethylidene-2-norbornene)와 DCPD(dicyclopentadiene)에 대하여 DMA(dynamic mechanical analysis)와 DSC(differential scanning calorimetry)를 이용하여 특성을 분석하였다. 또한 그들의 ROMP(ring-opening metathesis polymerization)반응과의 관계를 조사하였으며, ENB와 DCPD 블렌드에 대한 복구액으로서의 특성도 조사하였다. 본 연구실에서 합성된 두 가지 다른 종류의 ROMP 경화제에 대한 실제 자가손상복구에으로서의 적용상 특성도 연구하였다.

  • PDF

Low Temperature Structural Tests of a Composite Wing with Room Temperature-Curing Adhesive Bond (상온접합 본딩이 있는 복합재 날개의 저온 구조시험)

  • Ha, Jae Seok;Park, Chan Yik;Lee, Kee Bhum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.10
    • /
    • pp.928-935
    • /
    • 2015
  • This paper presents low temperature structural tests of a UAV wing which has room temperature-curing adhesive bond. The wing structure is made of carbon fiber reinforced composites, and the skins are bonded to the inner structures (such as ribs and spars) using room temperature-curing adhesive bond. Also, to verify damage tolerance design of the wing structure, barely visible impact damages are intentionally created in the critical areas. The attachment fittings of the wing are fixed in a specially designed chamber which can simulate the low temperature environments of the operating altitudes. The test load is applied by hydraulic actuators which are placed outside the chamber. The structural tests consist of strain survey tests and a durability test for 1-life fatigue load spectrum. During the tests, strains of major parts are measured by strain gauges and FBG sensors. The change of the initial impact damages is also monitored using piezoelectric sensors. The 1-life damage tolerance of the composite structure is verified by the structural tests under the simulated environments.

A Study on Crashworthiness and Rollover Characteristics of Low-Floor Bus made of Honeycomb Sandwich Composites (하니컴 샌드위치 복합재를 적용한 저상버스의 충돌 및 전복 특성 연구)

  • Shin, Kwang-Bok;Ko, Hee-Young;Cho, Se-Hyun
    • Composites Research
    • /
    • v.21 no.1
    • /
    • pp.22-29
    • /
    • 2008
  • This paper presents the evaluation of crashworthiness and rollover characteristics of low-floor bus vehicles made of aluminum honeycomb sandwich composites with glass-fabric epoxy laminate facesheets. Crashworthiness and rollover analysis of low-floor bus was carried out using explicit finite element analysis code LS-DYNA3D with the lapse of time. Material testing was conducted to determine the input parameters for the composite laminate facesheet model, and the effective equivalent damage model for the orthotropic honeycomb core material. The crash conditions of low-floor bus were frontal accident with speed of 60km/h. Rollover analysis were conducted according to the safety rules of European standard (ECE-R66). The results showed that the survival space for driver and passengers was secured against frontal crashworthiness and rollover of low-floor bus. Also, The modified Chang-Chang failure criterion is recommended to predict the failure mode of composite structures for crashworthiness and rollover analysis.

Study on the Characteristics of Wavelet Decomposed Details of Low-Velocity Impact Induced AE Signals in Composite Laminaes (저속충격에 의해 발생한 복합적층판 음향방출신호의 웨이블릿 분해 특성에 관한 연구)

  • Bang, Hyung-Joon;Kim, Chun-Gon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.308-315
    • /
    • 2009
  • Because the attenuation of AE signal in composite materials is relatively higher than that of metallic materials, it is required to develop a damage assessment technique less affected by the attenuation property of composite materials in order to use AE sensing as a damage detection method. In the signal processing procedure, it is profitable to use the leading wave that arrives first because the leading wave is less influenced by the boundary conditions. Using wavelet transform, we investigated the frequency characteristics of impact induced AE signals focused on the leading wave in advance and chose the key factors to discriminate the damaged condition quantitatively. In this research, we established a damage assessment technique using the sharing percentage of the wavelet detail components of AE signal, and conducted a low-velocity impact test on composite laminates to confirm the feasibility of the proposed signal processing method.

Fatigue Damage Evaluation of Woven Carbon-Fiber-Reinforced Composite Materials by Using Fatigue Damage Model (피로 손상 모델을 이용한 직조 탄소섬유강화 복합재료의 피로 손상 평가)

  • Park, Hong-Sun;Choi, Jung-Hun;Koo, Jae-Mean;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.757-762
    • /
    • 2010
  • Owing to the high specific strength and stiffness of composite materials, they are extensively used in mechanical systems and in vehicle industries. However, most mechanical structures experience repeated load and fatigue. Therefore, it is important to perform fatigue analysis of fiber-reinforced composites. The properties of composite laminates vary depending upon the stacking sequence and stacking direction. Fatigue damage of composite laminates occurs according to the following sequence: matrix cracking, delamination, and fiber breakage. In this study, fatigue tests were performed for damage analysis. Fatigue damages, which have to be considered in fatigue analysis, are determined by using the stiffness values calculated from hysteresis loops, and the obtained fatigue damage curve is examined using Mao's equation and Abdelal's equation.

Damage Visualization of Filament Wound Composite Hydrogen Fuel Tank Using Ultrasonic Propagation Imager (초음파전파영상화 시스템을 이용한 필라멘트 와인딩 복합재 수소 연료 탱크의 손상 가시화)

  • Lee, Jung-Ryul;Jeong, Hyomi;Chung, Truong Thanh;Shin, Hejin;Park, Jaeyoon
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.143-147
    • /
    • 2015
  • This paper proposes laser ultrasonic technique for the impact damage inspection of hydrogen fuel tank and proves that the impact damage can be visualized using an ultrasonic wave propagation imager with an easy detachable sensor head as an impact damage inspection tool for hydrogen fuel tanks. Also the performances of the proposed ultrasonic propagation imager support it can be implemented in real-world technology when the hydrogen car becomes popular.