• Title/Summary/Keyword: 복합재 보수

Search Result 78, Processing Time 0.02 seconds

Engineering Character of Ultra Rapid Hardening Concrete-Polymer Composite using CAC and Gypsum Mixed CAC (CAC 및 석고혼입 CAC를 사용한 초속경 콘크리트-폴리머 복합체의 공학적 특성)

  • Koo, Ja Sul;Yoo, Seung Yeup;Kim, Jin Man
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.2
    • /
    • pp.97-105
    • /
    • 2016
  • Recently, application case of the ultra rapid hardening concrete-polymer composite(URHCPC) are increasing to repair for the deterioration of pavement. But it is a major disadvantage that the main material is expensive and has environmental load. For these reasons, the development of the economic, eco-friendly materials is needed. Calcium Aluminate Composite (CAC), produced by rapid cooling of atomizing method with molten ladle furnace slag, is a material capable of improving the economic feasibility and reducing the environmental load of URHCPC. In this paper, the properties of CAC and gypsum mixed CAC (GC) as alternative materials of RSC according to the types of polymer dispersion were studied. The results were as follows; compressive strength, tensile strength, flexural strength, bonding strength and modulus of elasticity of the composites using CAC or GC showed higher values than those of plain proportion in 3 hour. In later age, they were at the same level as the general proportions. URHCPC using BPD as polymer dispersion had superior strength properties generally. But modulus of elasticity was the same level as the case of using a SBR latex. According to these results, CAC or GC can partially substituted for RSC to product the URHCPC. When URHCPC uses the BPD as the polymer dispersion, it can be improved performance.

An Experimental Study on the Mechanical Properties of HPFRCCs Reinforced with the Micro and Macro Fibers (마이크로 및 매크로 섬유에 의해 보강된 고인성 시멘트 복합재료의 역학적 특성에 관한 실험적 연구)

  • Kim Moo-Han;Kim Jae-Hwan;Kim Yong-Ro;Kim Young-Duck
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.263-271
    • /
    • 2005
  • HPFRCC(High Performance Fiber Reinforced Cementitious Composite) is a class of FRCCs(Fiber Reinforced Cementitious Composites) that exhibit multiple cracking. Multiple cracking leads to improvement in properties such as ductility, toughness, fracture energy, strain hardening, strain capacity, and deformation capacity under tension, compression, and bending. These improved properties of HPFRCCs have triggered unique and versatile structural applications, including damage reduction, damage tolerance, energy absorption, crack distribution, deformation compatibility, and delamination resistance. These mechanical properties of HPFRCCs become different from the kinds and shapes of used fiber, and it is known that the effective size of fiber in macro crack is different from that in micro crack. This paper reports an experimental findings on the mechanical properties of HPFRCCs reinforced with the micro fiber(PP50, PVA100 and PVA200) and macro fiber(PVA660, SF500). Uniaxial compressive tests and three point bending tests are carried out in order to compare with the mechanical properties of HPFRCCs reinforced with micro fibers or hybrid fibers such as compressive strength, ultimate bending stress, toughness, deformation capacity and crack pattern under bending, etc.,

Polymerization Behavior of Self-healing Agents for Damage Repair in Composite Materials (복합재 손상보수용 자가치료제의 중합 거동)

  • Oh, Jinoh;Yoon, Sungho;Jang, Seyong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.5
    • /
    • pp.35-42
    • /
    • 2014
  • Thermal analysis properties and adhesive properties of self-healing agents were evaluated through differential scanning calorimetry, reaction heat measurement, and adhesive shear test. D1E0, D3E1, D1E1, D1E3, and D0E1, depending on the mixing ratio of DCPD and ENB, were considered as self-healing agents. The amount of Grubbs' catalyst, depending on the type of self-healing agents, was varied from 0.1 wt% to 1.5 wt%. In the case of DCPD, the polymerization reaction occurred faster and the stabilized adhesive strength increased as the amount of catalyst increased; however, a large amount of catalyst was required. ENB had excellent reactivity with a small amount of the catalyst; however, high reaction heat was observed at the early stage of polymerization. Thermal analysis properties and adhesive properties of self-healing agents can be controlled by varying a mixing ratio of DCPD and ENB. Among the self-healing agents used for this study, the D3E1 would be one of the most preferable candidates with regard to maximum adhesive strength, reaching time to maximum adhesive strength, stabilized adhesive strength, and reaction heat.

Heat Performance of Rapid Hardening Nano-Cementitious Composite for Repairing of Concrete Structures (콘크리트 구조물 보수를 위한 초속경 나노-시멘트 복합체의 발열성능)

  • Cho, Sanghyeon;Lee, Heeyoung;Yu, Wonjun;Kim, Donghwi;Chung, Wonseok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.421-428
    • /
    • 2020
  • Recently, excellent thermal and electrical performance of cementitious composites by mixing nano materials are being studied. The purpose of this study is to research the heat generation and power consumption of rapid hardening nano-cementitious composites. The experiment was carried out after setting the rapid hardening cementitious material, curing day, and supply voltage as parameters. Rapid hardening nano-cementitious materials were classified into cement paste, mortar, and concrete The heat performance of all rapid hardening nano-cementitious composites in curing 1 day has increased over 10℃. The rapid hardening nano-cementitious composites can exhibit heat performance within 1 day. The heat performance of the rapid hardening nano-cementitious composites is maintained after 28 days.

Study on Material Characteristic of Daegu Modern History Museum Collection Rickshaw (대구근대역사관 소장 인력거 재질분석 연구)

  • Lee, Ui Cheon;Lee, Yeong Ju;Kim, Soo Chul
    • Journal of Conservation Science
    • /
    • v.38 no.2
    • /
    • pp.133-143
    • /
    • 2022
  • In this study, we analyzed the rickshaw (Owned by the Daegu Modern History Museum) by measuring each material. The purpose of the study was to identify the materials in modern cultural assets that utilize a variety of materials in a complex way, and establish basic data for preservation and management. Using portable X-ray fluorescence analyzers (P-XRF), species identification, fiber identification, paint film analysis (microscope observation, SEM-EDS, FTIR) on metal, wood, fiber and paint was carried out. Brass, an alloy of Copper, Zinc and Iron, was measured in the metal parts. Further, wooden parts, such as Oak (Quercus acutissima), Japanese Cedar (Cryptomeria japonica), Bamboo (Bambusoideae). Torreya nucifera (Torreya spp.) were identified in the body. Fiber parts consisted mainly of cotton, but some parts were also made of leather. In terms of paint, rickshaws were applied with multiple layers, using cashew (synthetic paint used in place of lacquer). In sum, the rickshaw body part appeared to overlap with layers of fiber, metal (soild), paint, and colored (black, red) layer.

The Improvement of Curtain Wall Design Process using Value Stream Mapping Tools (VSM기법을 활용한 커튼월 공사의 설계 프로세스 개선)

  • Kim, Chang-Duk;Lee, Sang-Hyuk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.7 no.5
    • /
    • pp.128-137
    • /
    • 2006
  • This paper is to develop curtain wall process life-cycle system in high-rise buildings in order to establish effective cooperation communication channels among the diverse constituents. This paper is to provide a base toward a curtain wall life-cycle management system to support decision making and the effective flow in light of information and materials. The four objectives of the research are 1) the analysis of the current curtain wall life-cycle process, 2) the analysis and development of the curtain wall design process As-Is model, and 3) the Muda analysis of the design process As-Is model and the suggestion of the improvements, 4) the development of curtain wall design To-Be model and comparative analysis of the improvement in terms of value streams. This research indicates the wastes decrease (or the values increase) from 6.7% up to 100% in different decision criteria through the improvement by the comparative analysis between the As-ls and To-Be curtain wall design process. This research suggests the potential improvement by VSM and a curtain wall life-cycle management system in curtain wall construction for diverse constituents be significant.

Material Characteristics and Deterioration Assessment of the Stone Buddhas and Shrine in Unjusa Temple, Hwasun, Korea (화순 운주사 석조불감의 재질특성과 풍화훼손도 평가)

  • Park, Sung-Mi;Lee, Myeong-Seong;Choi, Seok-Won;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.24
    • /
    • pp.23-36
    • /
    • 2008
  • The stone Buddhas and Shrine of Unjusa temple (Korea Treasure No. 797) in Hwasun formed in Koryo Dynasty are unique style which the Buddha faces each other the back parts of south and north within the stone Shrine. The stone Buddhas and Shrine are highly evaluated in historical, artistic and academic respects. But, the stone properties have been exposed in the open system various aspects of degradations weathered for a long time without specific protective facilities. The rock materials of the stone Buddhas and Shrine are about 47 blocks, and total press load is about 56.6 metric ton. The host rocks composed mainly of white grey hyaline lithic tuff and rhyolitic tuff breccia. In addition, biotite granite used as part during the restoration works. The chemical index of alteration for host tuffaceous rocks and the replacement granites range from 52.1 to 59.4 and 50.0 to 51.0, respectively. Weathering types for the stone Buddhas and Shrine were largely divided with physical, chemical and biological weathering to make a synthetic deterioration map according to aspects of damage, and estimate share as compared with surface area. Whole deterioration degrees are represented that physical weathering appeared exfoliation. Chemical weathering is black coloration and biological weathering of grey lichen, which show each lighly deterioration degrees. According to deterioration degree by direction of stone Buddhas and Shrine, physical weathering mostly appeared by 39.1% on the sorthern part, and chemical weathering is 61.2% high share on the western part. Biological weathering showed 38.3% the largest distribution on the southern part. Therefore, it is necessary to try hardening for the parts with serious cracks or exfoliations, remove secondary contaminants and organisms through regular cleaning. Also necessary to make a plan to remove moisture of the ground which causes weathering, and estimate that need established and scientific processing through clinical demonstration of conservation plan that chooses suitable treatment.

  • PDF

Degradation evaluation of paint films on surface treated steel by electrochemical impedance spectroscopy (전기화학적 임피던스 분광법에 의한 표면처리한 강재 도장의 부식-도막 열화도 평가)

  • Park, Jun-Mu;Park, Jae-Hyeok;Kim, Sun-Ho;U, Sang-Gyun;Gwon, Yong-Min;Mun, Gyeong-Man;Lee, Myeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.95-95
    • /
    • 2018
  • 강재의 방식법 중 도장은 부식을 억제하는데 효과적이고 편리한 방법으로 선박 및 해양 강 구조물의 방식법으로 사용되고 있다. 한편, 강 구조물의 효율적인 유지관리를 위해서는 방식 도장의 도막 열화도를 평가하고 잔존 수명을 예측하여 최적 시기에 보수도장 혹은 재도장하는 것이 필요하다. 일반적으로 선박 및 해양구조물에 적용되는 도막의 방식 성능 평가 방법으로 해수 침지 시험, 염수 분무 시험, 옥외 폭로 시험 등이 있다. 그러나 이러한 시험들은 그 시험 방법에 따라서 정량적인 평가에 한계가 있음은 물론 장기간 소요되는 등 곤란한 문제점이 있다. 그러므로 선박 및 해양구조물을 비롯하여 교량, 각종 강 구조물의 도장 방식에 사용되는 방식용 도료의 성능을 단기간에 적절하게 평가할 수 있는 가속시험법이 제시되며 연구-사용되고 있다. 그 중 도막 방식 성능을 보다 효율적, 비파괴적, 정량적으로 평가할 수 있는 임피던스 분광법(EIS)과 같은 전기화학적 방법은 상대적으로 시험 기간을 크게 단축시킬 수 있고, 대상 방식 도장의 미세한 성능 차이도 분별 가능하다는 장점이 있다[1]. 따라서 본 연구에서는 선박 및 해양구조물 등 가혹한 부식환경에서 강력한 내구성을 가질 수 있도록 다양한 종류의 표면처리 도장 시편을 제작하여 자외선 조사-염수분무-침지환경 등의 열악한 환경조건 하에서 부식-열화 촉진 시험을 실시하였다. 그리고 그 촉진 열화 과정에서 도막의 외관 상태를 관찰 분석함은 물론 전기화학적 임피던스 분광법을 병행 측정하며 그 표면막의 부식 및 도막 열화도를 비교-종합 평가하였다.본 연구에 사용된 시편은 Al 및 Zn 도금 강판에 에폭시, 에폭시-실리콘 우레탄, 에폭시-우레탄 도장 시편으로 Scribe, No Scribe 및 비교재 Al 및 Zn 도금 시편으로 분류하여 각각 실험을 진행하였다. 즉, 도막 열화 시험은 복합 노화 시험법으로 UV 조사 36 시간(ASTM G53), 염수분무 32 시간(ISO 7253), 수분 응축 10 시간을 1 Cycle로 100 Cycle(7800 시간) 동안 실험을 진행하였다. 이때 도막 열화도 평가는 전기화학적 임피던스 분광법을 이용하여 각 실험 조건별로 주파수에 따른 임피던스(Z) 값을 평가하였다. 즉, 상온 $25^{\circ}C$의 3.5% NaCl 100 ml 수용액에 작동 전극(Working Electrode)과 구리 도선을 통해 연결하였고, 노출 면적은 $1cm^2$로 일정하게 유지 하였으며, 상대 전극(Counter Electrode)은 탄소봉, 기준 전극(Reference Electrode)으로 포화카로멜전극(Saturated Calomel Electrode)을 사용하여 측정하였다. No Scribe 시편의 경우에는 Al 기판 에폭시-실리콘 우레탄 도장 시편이 우수한 도막 저항성을 나타내었으며, 에폭시-우레탄 도장시편은 23사이클 이후의 저항값이 가장 낮게 나타났다. Zn 기판의 경우는 에폭시, 에폭시-실리콘 우레탄, 에폭시-우레탄 도장 시편 모두 저항 값이 유사하였으며, Al 및 Zn 도금 시편은 도장 처리된 시편에 비해 훨씬 낮은 저항 값을 보였다. 또한 Scribe 시편의 경우에는 Al 기판 에폭시-실리콘 우레탄 도장 시편에서 높은 초기 저항 값을 보였으며, 23 사이클 후의 저항 값은 세 종류의 도막에서 약 1~0.1 Gohm 으로 나타났다. 그리고 Zn 기판 에폭시-실리콘 우레탄 도장 시편에서 가장 낮은 도막 저항 값이 나타났다. 이상의 실험을 통해서 본 연구 내용은 실내촉진시험으로 선박 및 해양 강 구조물에 사용되는 다양한 종류의 도막의 열화도를 평가하는 기초 설계 지침으로 응용될 수 있을 것으로 사료된다. 한편, 도막은 노출 환경에 따라 방식 성능이 다르므로 실제 도막의 사용환경을 고려하여 도장 사양별 적용 부위에 따른 적정 가속 실험 방법을 선정할 필요가 있다고 사료된다.

  • PDF