본 연구에서는 근사화된 학습알고리즘의 신경망 기반 독립성분분석에 의한 효율적인 복합영상 분리기법을 제안하였다. 제안된 학습알고리즘은 엔트로피 최적화론 위한 목적함수의 판을 구하기 위해, 도함수 계산을 요구하는 뉴우턴법 대신 단순히 함수 값만을 이용하여 계산을 근사화한 할선법 기초한 고정점 알고리즘이다. 이렇게 하면 뉴우턴법에서 요구되는 복잡한 도함수의 계산과정을 간략화 할 수 있어 고정점 알고리즘의 독립성분분석이 가지는 학습성능을 더욱 더 개선시킬 수 있다. 제안된 학습알고리즘의 독립성분분석 기법을 500개의 샘플을 가지는 4개 신호와 $512{\times}512$의 픽셀을 가지는 10개의 영상을 대상으로 임의의 혼합행렬에 따라 발생되는 복합신호 및 복합영상들을 시뮬레이션하였다. 시뮬레이션 결과, 기존의 뉴우턴법에 기초한 고정점 알고리즘의 분석기법보다 빠른 학습속도와 개선된 분리성능이 있음을 확인하였다. 특히 기존의 알고리즘에서 임의로 선정되는 초기값에 의존하는 학습성능과 대규모의 영상분리에서 발생될 수 있는 비현실적인 학습시간도 함께 해결할 수 있음을 확인할 수 있었다.
본 논문에서는 HSV, YCbCr 컬러 모델의 색상정보를 통한 화재 검출 알고리즘을 제안한다. 첫 번째 단계에서는 영상의 변화를 감지하기 위해서 입력된 영상으로부터 평균배경영상을 계산하여 전경영상을 분리한다. 그리고 차영상을 이용해 움직임을 인식하여 컬러 모델 색상정보를 비교할 영역을 구한다. 전경영상의 구해진 영역에서 컬러모델의 복합 색상정보를 이용하여 화재 영역을 검출한다.
복합재 격자 구조는 동일한 무게를 갖는 다른 구조에 비해 더 큰 하중을 견딜 수 있다는 장점으로 인해 다양한 분야에 적용이 시도되고 있다. 최근, 국내에서도 복합재 격자 구조 제작을 위한 기술 개발이 이루어지고 있으며 이에 복합재 격자 구조를 빠르고 정밀하게 검사할 수 있는 비파괴검사 기술의 개발 역시 필요하게 되었다. 본 논문에서는 초음파전파 영상화 시스템들을 활용하여 복합재 격자 구조에 빠르고 정밀한 비파괴검사를 하기 위한 연구를 수행하였다. 레이저 펄스에코 초음파전파 영상화 시스템을 통해 스킨에 쌓여 있는 복합재 격자 구조의 내부 리브 구조를 관찰할 수 있었고 접착분리를 검출할 수 있는 가능성을 확인하였다. 또한 검사시간을 줄이기 위해 주파수 영역을 최적화 하기 위한 밴드 디바이더를 개발 적용하였으며, 검사 결과의 질을 향상시키기 위해 곡률 보상 알고리즘을 개발하였다. 유도파 초음파전파 영상화 시스템으로는 리브 구조에 있는 층간분리 결함을 확인할 수 있었으며, 다중 소스 초음파전파영상을 통해 검사 영역을 확대시켰고 가변시간창 진폭 이미지 알고리즘을 통해 결함을 강조시킬 수 있도록 했다. 이와 같은 결과들을 통해 격자구조에 최적화 된 초음파전파 영상화 시스템의 지속적인 개발이 이뤄지면 복합재 격자 구조의 대량생산에 이은 고속 정밀 비파괴검사가 이뤄질 수 있을 것으로 판단된다.
내용기반 영상 검색 시스템은 데이터베이스에 저장된 정지영상의 색이나, 질감, 형태 등의 특징을 이용한다. 본 연구는 실험 영상 집합에서 주요 객체를 추출하여, 객체들의 외형으로부터 분리된 토큰들을 군집화 한 후, 그 군집단위를 색인어로 사용하여 검색하는 방법이다. 기존의 내용기반 영상 검색 시스템에서 모양 정보는 그 표현과 색인 정합 등의 문제로 처리 방법이 명확하지 않았고, 회전, 크기 변화, 폐색 등에 민감했다. 따라서 기존 방법의 문제점을 해결하기 위해서 토큰을 이용한 색인을 이용하여 지역 정보와, 이들 지역 정보들의 관계에 의한 전역 정보를 복합적으로 이용한 방법을 제안한다.
본 논문에서는 꾸준히 연구되어 오던 이미지 복원 문제에서 초해상화와 인페인팅이라는 복합적 이미지 복원을 동시에 처리하는 해결 방법을 제안한다. 초해상화는 국지적 픽셀 정보를 이용하여 고해상도의 영상을 복원하고, 인페인팅은 이미지 전체 정보를 활용하여 영상 내 비어 있는 영역을 생성해야 하므로, 이러한 두 가지 영상 복원 기법을 동시에 수행하는 것은 상당히 어려운 문제이다. 그렇기에 인페인팅과 초해상화는 이미지 복원에서 널리 활용되는 기술인 만큼 동시에 해결할 수 있는 기법에 대한 수요는 있음에도 지금까지 거의 연구되지 않았다. 본 논문은 초해상화 및 인페인팅 합동 처리에 있어 복합적인 정보를 모두 다뤄야하는 네트워크가 서로의 성능을 저하시키지 않도록 개략적 복원 네트워크 (Coarse network), 디테일 복원 네트워크 (Refinement network), 초해상화 네트워크 (SR network)로 분리하여 초해상화 및 인페인팅 합동 처리를 수행하며, 각 단계마다 결과 영상을 얻어 스케일 별 정답 영상과 손실함수를 계산하여 복합적인 성능을 올릴 수 있는 방법을 제시한다. 또한 순차적 단일 모델에 비하여 인페인팅과 초해상화를 합동 학습하는 제안 모델이 개선된 화질의 결과 영상을 획득할 수 있다는 것을 실험적으로 보인다.
본 연구에서는 신경망 기반 독립성분분석의 분리성능을 개선하기 위해 할선법과 모멘트의 조합형 고정점 알고리즘을 제안하였다. 할선법은 독립성분 상호간의 정보를 최소화하는 목적함수의 근을 근사적으로 구함으로써 계산과정을 단순화하여 좀 더 개선된 분리성능을 얻기 위함이고, 모멘트는 계산과정에서 발생하는 발진을 억제하여 보다 빠른 분리속도를 얻기 위함이다. 이렇게 하면 할선법이 가지는 근사성에 따른 우수성과 과거의 속성을 반영하여 발진을 억제하는 모멘트의 우수성을 동시에 살릴 수 있다. 제안된 알고리즘을 $256\times{256}$ 픽셀의 8개 지문과 $512\times{512}$ 픽셀의 10개 영상으로부터 임의의 혼합행렬에 따라 생성된 복합지문과 복합영상을 각각 대상으로 시뮬레이션 한 결과, 뉴우턴법에 기초한 기존의 알고리즘과 할선법만에 기초한 알고리즘보다 각각 우수한 분리률과 빠른 분리속도가 있음을 확인하였다. 또한 할선법의 이용은 뉴우턴법을 이용한 고정점 알고리즘보다 초기값에도 덜 의존하며, 문제의 규모가 커짐에 따른 비현실적인 분리시간도 해결할 수 있음을 확인하였다.
초음파 결함 분석 프로그램은 초음파 반사법을 기반으로 초음파 신호처리 기법을 적용하여 개발되었고, FRP 층간분리 및 FRP/내열고무 미접착 결함을 정량적으로 측정할 수 있었다. 복합재 연소관에서 검출된 결함은 절단하여 전산화 단층촬영 및 영상 현미경으로 분석하였고, 결함 분석 프로그램의 결과와 일치하였다. 본 논문은 복합재 연소관의 초음파시험 데이터를 C-Scan 영상으로 변환하여 결함을 분석할 수 있는 프로그램 개발 과정을 기술하였다.
초음파 결함 분석 프로그램은 초음파 반사법을 기반으로 초음파 신호 처리 기법을 적용하여 개발되었고, FRP 층간분리 및 FRP/내열고무 미접착 결함을 정량적으로 측정할 수 있었다. 복합재 연소관에서 검출된 결함은 절단하여 전산화 단층촬영 및 영상 현미경으로 분석하였고, 결함 분석 프로그램의 결과와 일치하였다. 본 논문은 복합재 연소관의 초음파시험 데이터를 C-Scan 영상으로 변환하여 결함을 분석할 수 있는 프로그램 개발 과정을 기술하였다.
디지털 영상은 획득 및 전송과정에서 다양한 잡음에 의해 훼손되며, 이러한 잡음들 중, AWGN과 임펄스 잡음이 가장 대표적이다. 기존의 영상복원 알고리즘들은 대부분 단일 잡음환경하에서 처리되며, 상이한 잡음모델에 대해서는 우수하지 못한 처리결과를 나타내었다. 따라서 본 논문에서는 임펄스 잡음과 AWGN을 분리하여 제거하기 위한 영상복원 알고리즘을 제안하였다 이때, 공간영역에서 마스크 내의 중심화소와 인접한 화소들의 크기차와 공간거리를 파라미터로 사용하여 복합적인 잡음성분을 제거하였다. 시뮬레이션 결과로부터, 제안한 방법은 임펄스 잡음과 AWGN을 제거하는 동시에 에지와 같은 영상의 상세정보를 우수하게 보존하였다.
목적 : 본 논문은 Bayes의 복합 의사결정모델을 이용한 효과적인 다중에코 자기공명영상의 분류방법을 소개한다. 동질성을 갖는 영역 혹은 경계선부위 등 영역을 명확히 분할하기 위하여 영상 내 국소 부위 이웃시스댐상의 주변정보(contextual information)를 이용한 분류 방법을 제시한다. 대상 및 방법 : 통계학적으로이질적 성분들로 구성된 영상을 대상으로 한 주변정보를 이용한 분류결과는 영상내의 국소적으로 정적인 영역들을이웃화소시스탬 내에서 정의되는 상호작용 인자의 메커니즘에 의해 분리함으로서 개선시킬 수 있다. 영상의 분류과정에서 분류결과의 정확도를 향상시키기 위하여 분류대상화소의 주변화소에 대한 분류패턴을 이용한다면 일반적으로 발생하는 분류의 모호성을 제거한다. 그러한 이유는 특정 화소와 인접한 주변의 데이터는 본질적으로 특정 화소와 상관관계를 내재하고 있으며, 만일 주변데이터의 특성을 파악할수 있다면, 대상화소의 성질을 결정하는데 도움을 얻을 수 있다. 본 논문에서는 분류 대상화소의 주변정보와 Bayes의 복합 의사결정모델을 이용한 context-dependent 분류 방법을 제시한다. 이 모델에서 주변 정보는 국소 부위 이웃시스댐으로부터 전이확률(trans sition probability)을 추출하여 화소간의 상관관계의 강도를 결정하는 상호인자 값으로 사용한다. 결과 : 본논문에서는 다중에코자기공명영상의 분류를 위하여 Bayes의 복합 의사결정모델을 이용한 분류방법을 제안하였다. 주변 데이터를 고려하지 않는 context-free 분류 방법에 비하여 특히 동질성을 강는 영역 혹은 경계선 부위 등에서의 분류결과가 우수하게 나타났으며, 이는 주변정보를이용한 결과이다. 결론 : 본 논문에서는클러스터링 분석과 복합 의사결정 Bayes 모델을 이용하여 다중에코 자기공명영상의 분류 결과를 향상시키기 위한 새로운 방법을 소개하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.