• Title/Summary/Keyword: 복합대류

Search Result 88, Processing Time 0.026 seconds

Nemerical Analysis of Natural Convection in a Confined Stratified Fluid (밀폐용기내 성층화된 유체의 자연대류에 관한 수치적 연구)

  • 현명택;이진호;모정하
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.6
    • /
    • pp.1321-1329
    • /
    • 1989
  • 본 논문에서는 성층화된 용액ㅇ네 수평방향으로 온도구배가 가해지는 경우에 있어서 두 부력인자의 상대적 크기에 따라 나타나는 유동형태와 그에 따른 온도, 농도 분포 및 열전달특성을 수치적으로 연구하고자 한다.

Effect of Heat Treatment Condition on Tensile Strength of Glass Fibers (유리섬유의 열처리조건이 섬유 인장강도에 미치는 영향)

  • 이재락;오진석;박수진;김영근
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.257-260
    • /
    • 2002
  • 자체적으로 방사된 C-유리섬유와 E-유리섬유의 최적 싸이징제 제거 열처리온도조건을 알아보기 위하여 대류오븐에서 100, 200, 300, 그리고 $400^{\circ}C$에서 2, 4, 8, 16, 32, 64 그리고 128분 동안 체류한 섬유의 인장강도를 측정하였다. 그리고 다른 열처리조건으로 325, 350, 375 그리고 $400^{\circ}C$$25^{\circ}C$씩 증가시켜 처리시간은 1.5, 3, 6, 12, 24, 48 그리고 96시간을 선택하여 섬유의 인장강도 변화를 측정하였다. C-유리섬유의 경우 열처리에 의한 인장강도 감소가 최대 1.8%정도 였다. E-유리섬유의 열처리에 의한 인장강도의 감소률은 최대 약 1%정도였다. C-유리섬유의 경우 열처리 온도가 짧은 시간과 긴체류시간에서 일정한 영향을 미쳤다. 즉 높은 열처리 온도에서 높은 인장강도 감소를 나타내었다. 그 반면 E-유리섬유의 경우 짧은 체류시간에 있어서는 C-유리섬유와 유사한 특성을 나타내었으나 긴체류 시간에 있어서는 열처리 온도조건에 의한 영향이 극히 미미하였다.

  • PDF

A Finite Element Analysis of Conjugate Heat Transfer Inside a Cavity with a Heat Generating Conducting Body (고체 열원이 존재하는 공동 내의 복합열전달 문제의 유한요소해석)

  • Ahn, Young-Kyoo;Choi, Hyoung-Gwon;Yong, Ho-Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.3
    • /
    • pp.170-177
    • /
    • 2009
  • In the present study, a finite element analysis of conjugate heat transfer problem inside a cavity with a heat-generating conducting body, where constant heat flux is generated, is conducted. A conduction heat transfer problem inside the solid body is automatically coupled with natural convection inside the cavity by using a finite element formulation. A finite element formulation based on SIMPLE type algorithm is adopted for the solution of the incompressible Navier-Stokes equations coupled with energy equation. The proposed algorithm is verified by solving the benchmark problem of conjugate heat transfer inside a cavity having a centered body. Then a conjugate natural heat transfer problem inside a cavity having a heat-generating conducting body with constant heat flux is solved and the effect of the Rayleigh number on the heat transfer characteristics inside a cavity is investigated.

Conjugate Heat Transfer in a Vertical Channel with Protrunding Heat Source (돌출된 열원이 부착된 수직 채널내 복합열전달)

  • Kim, Ui-Gwang;Baek, Byeong-Jun;Jo, Byeong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.741-751
    • /
    • 1996
  • The coupled conduction and convection heat transfer from the protruding heat source in a vertical channel is numerically investigated. Conjugate solution of the two-dimensional energy equation is obtained for the incompressible air flow over the rectangular block with local heat source. It was found that several recirculation zones and separation bubble near the block were related to Re and Gr. And the results show that fractions of the heat transfer through each of the block face, maximum temperature of the block and the relative effect of each parameter on the maximum temperature and heat transfer.

A Study of Natural Convection Heat Transfer in a Composed Rectangular-Parallelogrammic Enclosure with a Guide Vane (안내판을 가진 사각 및 평행사변형이 조합된 복합밀폐공간에서의 자연대류 열전달에 관한 연구)

  • Jang, Young-Keun;Cho, Woon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.619-626
    • /
    • 2001
  • The present experimental and numerical study investigate flow and natural convection heat transfer characteristics of a composed rectangular-parallelogrammic enclosure with a guide vane. The governing equations for the two-dimensional, laminar, natural convection process in an enclosure are discretized by the control volume approach which insures the conservative characteristics to be satisfied in the calculation domain, and solved by a modified SIMPLE algorithm. The momentum and energy equations are coupled through the buoyancy term. In this results of experimental study, the natural convection heat transfer characteristics was well coincided with conclusions of other earlier experimental researches and numerical analysis.

Temperature performance improvement of SMPS using thermal simulation (열 해석을 이용한 SMPS 온도 특성 개선)

  • Na, Tae-Kwon;Jung, Jee-Hoon;Choo, Jong-Yang;Kwon, Joong-Gi
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.183-185
    • /
    • 2008
  • 재택근무와 소규모 창업 등 사무 환경의 변화 에 따라 프린터와 복합기의 소형화가 요구 되고 있다. 이러한 소형화에 의해 프린터 내부의 발열 요소들이 제한 된 공간에 배치되어, 기기 내부의 열 유동 및 발열 개선은 제품의 수명과 안정성 확보를 위한 중요 사항이 되었다. 본 논문에서는 프린터와 복합기의 내부 요소 중 주요 발열원인 전원 공급 장치에 대하여 Computational fluid dynamics (CFD) software 인 ICEPAK을 이용하여 중요 부품의 배치 조건에 따른 대류 와 온도 특성을 확인 하고, 최적화 된 부품 배치 방법을 제안한다. 또한 제안하는 부품 배치 방법을 적용한 초박형 프린터용 50W 급 전원 공급 장치를 제작하여 실제 온도 특성이 개선됨을 확인한다.

  • PDF

Conjugate Heat Transfer of Laminar Film Condensation Along a Horizontal Plate (강제대류 층류 막응축에서 복합열전달)

  • Lee Euk-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.3 s.246
    • /
    • pp.238-245
    • /
    • 2006
  • This paper proposes appropriate conjugate parameters and dimensionless temperatures to analysis the conjugate problem of heat conduction in solid wall coupled with laminar film condensation flow adjacent to horizontal flat plate. An efficient methods for some fluids are proposed for its solution. The momentum and energy balance equations are reduced to a nonlinear system of ordinary differential equations with four parameters: the Prandtl number, Pr, Modified Jacob number, $Ja^*/Pr$, defined by an overall temperature difference, a property ratio $\sqrt{\rho_l{\mu}_l/{\rho_v{\mu}_v}$ and the conjugate parameter $\zeta$. The obtained similarity solution reveals the effect of the conjugate parameter, and the results are compared with the simplified solution. The variations of the heat transfer rates as well as the interface temperature and frictions along the plate are shown explicitly.

A Study on Thermal Characteristics of Hybrid Solar Receiver for Dish Concentrating System (고온용 태양열 복합 흡수기의 열특성 분석 연구)

  • Kang, Myeong-Cheol;Kim, Jin-Soo;Kang, Yong-Heack;Kim, Nack-Joo;Yoo, Seong-Yeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.571-575
    • /
    • 2006
  • To improve economic of solar power generation, stirling engine is required continuous operation and the receiver has to be provided with an additional combustion system. The hybrid receiver with a specially adapted combustion system is possible to 24 hr/day operation by solar and gas-fired. The inner cavity and external wall serve as absorber surfaces using collected irradiation and heat transfer surfaces for the gas heat flow, respectively. The hybrid receiver was designed and fabricated for the dish/stirling system. The analytical method for pridicting natural convective heat loss from receiver is used. The Koenig and Marvin model is used to estimate convection heat loss and heat transfer coefficiency.

  • PDF

Solid-Fluid Interface Treatment in Conjugate Heat Transfer Analysis using Unstructured Grid System (비정렬격자계를 사용하는 복합열전달 해석에서의 고-액 계면 처리방법)

  • Myong Hyon-Kook
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.5
    • /
    • pp.451-457
    • /
    • 2006
  • Conjugate heat transfer (CHT) is the simultaneous, coupled heat transfer within a fluid and an adjoining solid, and the interface treatment plays an important role in its analysis, particularly when using unstructured grid system. In the present paper a new solid-fluid interface treatment in CHT analysis is presented and applied to two typical CHT problems, i.e. natural convections in both concentric thick-walled cylinders and cavity with a centered solid body. The present interface treatment for unstructured mesh clearly demonstrates the same accuracy and robustness as that for typical structured mesh.

A numerical study on the combined natural convection and radiation in a partially open complex enclosure with a heater and partitions (발열체와 격막이 있고 일부가 열린 복합공간내의 자연대류-복사열전달에 관한 수치적 연구)

  • Kim, Tae-Guk;Min, Dong-Ho;Han, Gyu-Ik;Son, Bong-Se;Seo, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.235-251
    • /
    • 1997
  • A numerical simulation on the combined natural convection and radiation is carried out in a partially open rectangular enclosure with a heater by using the finite volume and the S-8 discrete ordinate methods. The fluid inside the enclosure is considered as an absorbing, emitting and anisotropic scattering media. The heater causes a natural circulation of the fluid (10$^{5}$ $^{9}$ ) which results in significant in-flow of the ambient cold fluid through the partially open wall. Comparing the results of pure convection with those of the combined convection- radiation, the combined heat transfer results with small Planck numbers (P$_{l}$ <1.0) show much stronger circulation than those of the pure convection, and the fluid circulation is more evident for larger Rayleigh numbers. When one of three radiative properties - the medium absorption coefficient, the wall reflectivity, and the scattering albedo - increases, the fluid circulation and the heat transfer in the enclosure are reduced. The location of the heater and the open ratio of the right wall are also shown to affect the fluid circulation and heat transfer significantly. However, the anisotropy of the scattering phase function is shown to be unimportant for the fluid circulation and heat transfer within the enclosure considered in this study.