• Title/Summary/Keyword: 복합거동 해석

Search Result 734, Processing Time 0.03 seconds

Development of Performance-Based Seismic Design of RC Column Using FRP Jacket by Displacement Coefficient Method (FRP 보강 철근콘크리트기둥의 변위계수법에 의한 내진성능설계기법 개발)

  • Cho, Chang-Geun;Ha, Gee-Joo;Bae, Su-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.491-497
    • /
    • 2007
  • In the current research, the scheme of displacement-based seismic design for seismic retrofit of concrete structures using FRP composite materials has been proposed. An algorithm of the nonlinear flexural analysis of FRP composite concrete members has been presented under multiaxial constitutive laws of concrete and composite materials. An algorithm for performance-based seismic retrofit design of reinforced concrete columns with FRP jacket has been newly introduced to modify the displacement coefficient method used in reinforced concrete structures. From applications of retrofit design, the method are easy to apply in the practice of retrofit design and give practical prediction of nonlinear seismic performance evaluation of retrofitted structures.

The Effect of Neglecting the Longitudinal Moment Terms in Analyzing Laminates with Increasing Aspect Ratio (적층판 해석시 형상비 증가에 따른 종방향 모멘트의 무시효과)

  • Han, Bong Koo;Kim, Duk Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.1
    • /
    • pp.53-60
    • /
    • 2001
  • Theories for advanced composite structures are too difficult for such design engineers for construction and some simple but accurate enough methods are necessary. The senior author has reported that some laminate orientations have decreasing values of $D_{16}$, $B_{16}$, $D_{26}$ and $B_{26}$ stiffnesses as the ply number increases. For such plates the fiber orientations given above behave as specially orthotropic plates and simple formulas developed by the senior author. Most of the bidge and building slabs on girders have large aspect ratios For such cases frurther simplification is possible by neglecting the effect of the longitudinal moment terms(Mx) on the relevant partial differential equationsof equilibrium In this paper, the result of the study on the subject problem is presented.

  • PDF

Consolidation Analysis of Soils Improved by Partly Penetrated SCP with Degree of Consolidation and Replacement Ratio (압밀도 및 치환율 변화에 따른 미관통 SCP 지반의 압밀해석)

  • Lee, Kang-Il;Lee, Jae-Wook;Im, Eun-Sang;Ju, Kyung-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.2
    • /
    • pp.11-20
    • /
    • 2012
  • Partially penetrated SCP method is to install sand compaction piles in a soft clay layer not penetrating to the bed layer. In this study, consolidation behaviors of soft grounds improved by both partially and fully penetrated SCP methods are presented. When the replacement ratio is low, the settlement characteristic of the ground improved by fully penetrated SCP method seems to be consistent regardless the degree of consolidation. On the other hands, the ground improved by partially penetrated SCP method appears to decrease depending on the degree of consolidation. In addition, the settlement of upper clay layer is more increasing as the penetration ratio ($H_d/H$) is decreasing. No effect of stress concentration at the lower part of the partially penetrated SCP method is developed. The ratio of stress sharing appears to be almost consistent regardless the degree of consolidation.

Interface Fracture and Crack Propagation in Concrete : Fracture Criteria and Numerical Simulation (콘크리트의 계면 파괴와 균열 전파 : 파괴규준과 수치모의)

  • 이광명
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.6
    • /
    • pp.235-243
    • /
    • 1996
  • The mechanical behavior ot concrete is strongly influenced by various scenarios of crack initiation and crack propagation. Recently. the study of the interface fracture and cracking in interfacial regions is emerged as an important field, in the context of the developement of high performance concrete composites. The crack path criterion for elastically homogeneous materials is not valid when the crack advances at an interface because. in this case, the consideration of the relative magnitudes of the fracture toughnesses between the constituent materials and the interface are involved. In this paper, a numerical method is presented to obtain the values of two interfacial fracture parameters such as the energy release rate and the phase angle at the tip of an existing interface crack. Criteria based on energy release rate concepts are suggested for the prediction of crack growth at the interfaces and an hybrid experimental-numerical study is presented on the two-phase beam composite models containing interface cracks to investigate the cracking scenarios in interfacial regions. In general, good agreement between the experimental results and the prediction from the criteria is obtained.

A Study on Foot Pressure by using an Insole Equipped with the Orthogonal Grid Sensor (직교 그리드 센서가 삽입된 인솔을 이용한 족압분포 연구)

  • Son, Jeong-Hyeop;Jun, In-Jun;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.161-166
    • /
    • 2021
  • In this study, we present a research method to develop a shoe that prevents foot injury by inducing the foot pressure. An orthogonal grid sensor was used to check the foot pressure in the upright standing position, and the change in the foot pressure distribution for various conditions was compared. We checked the conditions for distributing foot pressure efficiently by changing the spring constant of the spring inserted into the sole of the shoe and the foot pressure generated with or without the arch of the insole. In order to minimize the experimental error from the randomness of the human body's behavior, it is possible to predict through foot pressure under certain conditions through finite element analysis that simulates the pressure distribution. By checking the change of foot pressure according to the number and arrangement of springs through finite element analysis, conditions were established to provide more efficient foot pressure. The result can be used for designing footwear for patients with diabetic feet.

Effect of Heat Treatment on Mechanical Properties of Cross-Linked Ultra-High Molecular Weight Polyethylene Used for Artificial Joint Liner (인공관절 라이너용 가교된 초고분자량폴리에틸렌(UHMWPE)의 열처리 조건에 따른 기계적 특성 변화)

  • Kim, Hyun-Mook;Kim, Dong-Hoon;Gu, Ja-Uk;Choi, Nak-Sam;Kim, Sung-Kon
    • Composites Research
    • /
    • v.22 no.2
    • /
    • pp.1-6
    • /
    • 2009
  • The mechanical characteristics of gamma-ray irradiated UHMWPE specimens were investigated under various heat treatment conditions. The heat treatment was performed in the range of annealing and remelting temperatures. The annealing treatment below the temperature of $130^{\circ}C$ hardly induced changes in the tensile strength, the strain at the failure and the hardness. However the remelting treatment above $140^{\circ}C$ deteriorated those mechanical properties. It was shown in an FTIR analysis that the annealing treatment caused some oxidation of free radicals created by the pretreatment of the irradiation. These quantitative data represented by the behavior of mechanical properties might be used as basic informations for the design and analysis of various artificial joints.

A Study on Seismic Fragility of PSC Bridge Considering Aging and Retrofit Effects (PSC 교량의 노후도 및 FRP 보강 효과를 고려한 지진취약도 분석)

  • An, Hyojoon;Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.34-41
    • /
    • 2020
  • In recent years, magnitude and frequency of earthquakes have increased in Korea. Damage to a bridge, which is one of the main infrastructures, can directly lead to considerable loss of human lives. Therefore, engineers need to evaluate the seismic fragility of the structure and prepare for the possible seismic damage. In particular, the number of aging bridges over 30 years of service increases, and thus the seismic analysis and fragility requires accounting for the aging and retrofit effects on the bridge. In this study, the nonlinear static and dynamic analyses were performed to evaluate the effects of the aging and FRP retrofit on a PSC bridge. The aging and FRP retrofit were applied to piers that dominate the response of the bridge during earthquakes. The maximum displacement of the bridge increased due to the aging of the pier but decreased when FRP retrofit applied to the aged pier. In addition, seismic fragility analysis was performed to evaluate the seismic behavior of the bridge combined with the seismic performance of the pier. Compared with the aged bridge, the FRP retrofit bridge showed a decrease in the seismic fragility in all levels of damage. The reduction of the seismic fragility in the FRP bridge was prominent as the value of PGA and level of damage increased.

An Estimation Method of Settlement and the Behaviour Characteristics of Granular Compaction Pile Reinforced with Uniformly Graded Permeable Concrete (등입도 투수성 콘크리트 보강 조립토 다짐말뚝의 거동특성 및 침하량 평가기법)

  • Kim, Jeong-Ho;Kim, Seung-Wook;Kim, Hong-Taek;Hwang, Jeong-Soon
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.73-83
    • /
    • 2006
  • The behaviour characteristics of Granular Compaction Pile (GCP) are mainly governed by the lateral confining pressure mobilized in the soft soil matrix to restrain the bulging failure of the granular compaction pile. The GCP method is most effective in soft soil with undrained shear strength ranging $15{\sim}50kPa$. However, the efficiency of this method reduces the more compressible soil conditions, which does not provide sufficient lateral confinement. In the present study, the GCP method reinforced with uniformly graded permeable concrete is suggested for the extension of application to the soft ground. Also, large triaxial compression tests are conducted on composite-reinforced soil samples for verification of availability of the suggested method and the settlement estimation method of the reinforced GCP is proposed. Furthermore, for the verification of the proposed method, predicted settlements by the proposed method are compared with results of 3-dimensional numerical analyses. In addition, parametric studies are performed together with detailed analyses of relevant design parameters.

Effect of ,Shear Stress on the Viscosity and Electrical Conductivity for the Metal-Filled Composite Materials (금속입자 충전 복합재료의 전단응력에 따른 점도 및 전기 전도도 변화)

  • Lee, Geon-Woong;Choi, Dong-uk;Lee, Sang-Soo;Kim, Jun-Kyung;Park, Min
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.644-652
    • /
    • 2002
  • This study aims at developing the conductive pastes consisting of room temperature vulcanizing (RTV) silicone and metal powder as matrix and filler, respectively. Electrical and rheological properties of metal - filled polymer composites are in general strongly affected by particle shape, side and dispersion state of the filler. In highly filled systems, particles tend to form very complex agglomerated structure which is easily changed when subjected to shear deformation. And the breakdown of agglomerated particles due to shear usually leads to the change of electrical conductivity of the composite. In this study, the effect of particle size and dispersion state of filler on the electrical conductivity of the composites are investigated to offer the selection criteria of conductive filler by measuring the rheological properties of uncured composites and the electrical conductivity of the cured composites. It was found that the type of metal filler systematically affected the rheological property, the susceptibility to shear and the degree of change of electrical conductivity of the composite. The effect of shear on the properties is more conspicuous in the composites containing large particle, indicating that both rheological and electrical properties can be improved by controlling the dispersion state at a given filler content.

The Effect of Mg/W Addition on the Metal-insulator Transition of VO2 Using Spark Plasma Sintering (통전활성소결법으로 제조한 VO2의 금속-절연체 전이 특성에 W와 Mg 첨가가 미치는 영향)

  • Jin, Woochan;Kim, Youngjin;Park, Chan;Jang, Hyejin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.63-69
    • /
    • 2022
  • Vanadium dioxide shows a unique and interesting property of metal-insulator transition, which has attracted great attention from the viewpoints of fundamental materials science and industrial applications. In this study, the effect of Mg and W addition on the metal-insulator transition of VO2 were investigated for the bulk materials that are prepared by spark plasma sintering. The X-ray diffraction analysis of the sintered specimens revealed that the lattice parameters barely change, and the secondary phases are present. The transition temperature of MIT appears in the range of 64.2-64.6℃, regardless of the impurity element and content. On the other hand, the addition of Mg and W alters the electrical conductivity, i.e., the electrical conductivity increases by a factor of up to 2.4 or decrease by a factor of up to 57.4 depending on the impurity type and its content. The thermal conductivity showed the values of 1.8~2.5 W/m·K below the transition temperature, and the values of 1.9~2.8 W/m·K above the transition temperature. These changes in electrical and thermal conductivities can be attributed to the combination of the change in charge carrier density, the impurities as scattering centers, and the change in microstructures.