• Title/Summary/Keyword: 복합개질

Search Result 219, Processing Time 0.027 seconds

PEI Hollow Fiber Membranes Modified with Fluorinated Silica Nanoparticles for the Recovery of Biogas from Anaerobic Effluents (불화 실리카로 개질된 폴리에테르이미드 중공사막을 이용한 혐기성 유출수로부터 바이오가스 회수)

  • Yun, Kang Hee;Wongchitphimon, Sunee;Bae, Tae-hyun
    • Membrane Journal
    • /
    • v.30 no.5
    • /
    • pp.326-332
    • /
    • 2020
  • In this study, polymer-fluorinated silica composite hollow fiber membranes were fabricated and applied to a membrane contactor for the recovery of methane dissolved in the anaerobic effluent. To prepare the composite membranes, porous hollow fiber substrates were fabricated with Ultem®, a commercial polyetherimide (PEI). Subsequently, fluorinated silica particles were synthesized and coated on the surface via strong covalent bonding. Due to the high porosity, our membrane showed a CH4 flux of 8.25 × 10-5 ㎤ (STP)/㎠·s at the liquid velocity of 0.03 m/s which is much higher that that of commercial polypropylene membrane designed for degassing processes. This is attributed to our membrane's high porosity as well as a superior surface hydrophobicity (120~122°) resulted from the coating with fluorinated silica nanoparticles.

Study of Plasma Polymerization on Wood Powder/PP Composites Interface (플라즈마 처리가 목분/폴리프로필렌 복합재의 계면에 미치는 영향 연구)

  • Ha, Jong-Rok;Kim, Byung Sun;Yi, Jin Woo
    • Composites Research
    • /
    • v.26 no.3
    • /
    • pp.170-174
    • /
    • 2013
  • Atmospheric glow plasma polymerization was applied to wood powder before fabricating polypropylene (PP) matrix composites. Seven different types of monomers (Oxygen, Benzene, CH4, Acrylic-acid, Hexafluoroethane, Trifluorotolune, Hexamethyl-disiloxane) were analyzed to determine the most suitable precursor for plasma polymerization. The surface energy was calculated from measured contact angle about each monomer on PP. Hexamethyl-disiloxane (HMDSO) had a highest surface energy and is selected as the most suitable monomer. Wood powder and polypropylene were mixed as pellets by twin screw extruder and then 50 wt% wood powder/PP composites were produced by an injection machine. Tensile strength and Flexural strength have improved by 7.59% and 12.43% at the maximum respectively. SEM (Scanning Electron Microscope) observation on the fracture surface revealed that the plasma polymerization have improved the interfacial bonding and the mechanical properties of the composites.

Adhesive Bonding Properties between NBR and Polyamide Woven Fabric with Atmospheric Pressure Plasma Treatment (대기압 플라즈마 처리한 폴리아미드 직물과 NBR의 접착특성)

  • Ryu, Sang-Ryeoul;Lee, Dong-Joo
    • Composites Research
    • /
    • v.23 no.6
    • /
    • pp.32-38
    • /
    • 2010
  • The effect of the atmospheric pressure plasma(APP) treatments is experimentally investigated to ascertain the optimum condition to yield the best adhesive properties between a polyamide woven fabric and acrylonitrile butadiene rubber(NBR). For the atmospheric pressure flame plasma(APFP) treatment, the optimum number of treatment at given conditions is 2 times. The thermal deformation of the fabric is more serious with increasing the number of APFP treatment. The adhesive strength of the case with APFP treated fabric is increased about 35% when compare to the case with non-APFP treated one for the interface(bonding agent one or two coatings). When the surface is coated twice with the bonding agent, the adhesive energy with APFP treated fabric is increased about 4 times. It was found that the surface modification of polyamide woven fabric by APFP treatment is a fast, economic and applicable method to improve the adhesive properties between woven fabric and rubber when compared to other APP treatments.

In vivo assessment of Fibroblast growth factor(FGF)-Fibronectin fusion protein coating on titanium;Histomorphometric analysis in rabbit tibia (섬유아세포 성장인자와 파이브로넥틴 복합 단백질로 처리한 타이태늄의 생물학적 효과;가토의 경골을 이용한 조직계측학적 분석)

  • Na, Ho-Kyun;Kim, Tae-Il;Lim, Sang-Hoon;Cho, Ki-Young;Chung, Chong-Pyoung;Han, Soo-Boo;Ku, Young
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.1
    • /
    • pp.153-161
    • /
    • 2005
  • 파이브로넥틴은 세포외기질에 존재하는 당단백질로 세포의 부착, 이동, 성장 및 분화에 관여하며, 섬유아세포 성장인자는 세포의 증식 이동 및 분화에 영향을 주는 중요한 성장인자로 알려져 있다. 최근 연구에 의하면, 파이브로넥틴은 조골세포의 타이태늄 임플란트 표면으로 이주와 증식 및 골생성을 촉진하며, 섬유아세포 성장 인자는 파이브로넥틴에 상승작용을 한다고 보고된 바 있다. 이 실험의 목적은 파이브로넥틴 및 섬유아세포 성장인자의 복합 단백질을 이용하여 타이태늄 임플란트의 골 반응을 알아보는 것이다. 체중 2.5 kg 내외의 건강한 18 마리의 웅성가토를 준비하여 무균 사육하였고, 순수 타이태늄을 절삭가공하여 직경 3.5mm, 길이 6mm 의 machined surface를 지니는 screw type 의 임플란트를 준비하였다. 사람의 유전자를 기초로, 유전자 재조합법을 통해, 적절한 primer를 이용하여 얻은 섬유아세포 성장인자를 파이브로넥틴 III 형 분절의 9-10 번 도메인에 결합시켜 얻은 복합 단백질을 준비된 임플란트에 표면처리하여 실험군으로 하였고, 표면처리하지 않은 임플란트를 대조군으로 하여, 가토의 좌우 경골에 각각 2 개씩의 임플란트를 식립하였다. 4주 후, 가토를 희생시켜 각 경골 당 한 개의 임플란트에서 뒤틀림 제거력을 측정하였고 나머지 임플란트 식립 부위 에서는 경골을 포함하는 조직표본을 제작하였다. 조직표본상에서 골접촉이 가장 좋은 3 개의 나사산의 길이를 측정하고, 나사와 접촉하는 골의 길이를 측정하여 골-임플란트 접촉도를 구하고, 같은 부위에서 나사산 사이의 면적과 골이 차지하는 면적을 비교하여 골생성률을 얻었다. 실험군과 대조군의 결과는 Student t-test 를 이용하여 신뢰도 95% 수준에서 통계학적 유의성을 검정하였다. 파이브로넥틴과 섬유아세포 성장인자의 복합 단백질로 표면처리된 임플란트와 표면처리를 하지 않은 임플란트는 뒤틀림 제거력에서는 통계적 유의성이 나타나지 않았으나, 골-임플란트 접촉도와 골생성률에서 복합 단백질로 처리된 임플란트가 통계적으로 유의하게 높은 결과를 보였다. 이상의 연구결과로, 섬유아세포 성장인자와 파이브로넥틴 복합 단백질로 처리한 타이태늄 임플란트가 주변 골 형성을 촉진시켜, 골유합을 증진시킴을 알 수 있었다. 따라서, 복합 단백질이 타이태늄 임플란트의 성공률을 높이기 위한 표면개질 물질로 이용될 가능성을 확인할 수 있었다.

Effect of Fluorination of Carbon Nanotubes on Physico-chemical and EMI Shielding Properties of Polymer Composites (고분자 복합재의 물리화학적 및 전자파차폐 특성에 미치는 탄소나노튜브의 불소화 영향)

  • Lee, Si-Eun;Kim, Doyoung;Lee, Man Young;Lee, Min-Kyung;Jeong, Euigyung;Lee, Young-Seak
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.114-121
    • /
    • 2015
  • Mutli-walled carbon nanotubes (MWCNTs) were surface-modified by a hydrofluoric acid solution to remove impurities and improve interfacial bonding and dispersion of nanotubes in an epoxy matrix. The crystallinity on the surface of treated MWCNTs was investigated by X-ray photoelectron spectroscopy and Raman spectroscopy. The mechanical properties were characterized by tensile test, and the enhancement of mechanical properties of the modified MWCNTs/epoxy composites was indicated by a 33% increase in tensile strength. The electromagnetic interference shielding effectiveness (EMI-SE) of modified MWCNTs/epoxy composites was improved with an increase in concentration of hydrofluoric solution, and EMI-SE showed the maximum increase with 25% HF. However, mechanical and EMI-SE properties didn't show further increase with over 50% HF concentration because the properties of MWCNTs were influenced by degradation of crystallinity and intrinsic properties of MWCNTs. The mechanical and electrical property enhancements of the polymer composites are attributed to the modification of MWCNTs which improve crystallinity of MWCNTs and dispersion in the epoxy resin.

Comparative Study of Physical Dispersion Method on Properties of Polystyrene/Multi-walled Carbon Nanotube Nanocomposites (폴리스티렌/다중벽 탄소나노튜브 나노복합재료의 물리적 분산 방법에 따른 물성)

  • Kang, Myung Hwan;Yeom, Hyo Yeol;Na, Hyo Yeol;Lee, Seong Jae
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.526-532
    • /
    • 2013
  • The effect of CNT dispersion method on rheological and electrical properties of polystyrene/carbon nanotube (PS/CNT) nanocomposites via latex technology was compared. The nanocomposites were prepared through freeze-drying the dispersed suspension comprised of CNTs and PS particles. In this study, physical dispersion method, either sodium dodecylsulfate (SDS) addition or polyvinyl pyrrolidone (PVP) wrapping, was employed to prevent the deterioration of intrinsic properties of CNT caused by chemical modification. The physical method applied to latex technology was very effective in CNT dispersion. With SDS addition, the enhancement of rheological properties was low compared to PVP wrapping because the properties of matrix were deteriorated due to the incorporation of low molecular weight SDS. The electrical percolation threshold of PS/SDS-stabilized CNT and PS/PVP-wrapped CNT nanocomposites was 0.23 and 0.90 wt%, respectively. The enhancement of electrical conductivity was low in the case of PVP wrapping because the non-conducting PVPs wrapped around CNT restricted the electrical connection between CNTs.

Effect of Binder and Electrolyte on Electrochemical Performance of Si/CNT/C Anode Composite in Lithium-ion Battery (리튬이온 이차전지에서 Si/CNT/C 음극 복합소재의 전기화학적 성능에 대한 바인더 및 전해액의 효과)

  • Choi, Na Hyun;Kim, Eun Bi;Yeom, Tae Ho;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.327-333
    • /
    • 2022
  • In this study, silicon/carbon nanotube/carbon (Si/CNT/C) composites for anode were prepared to improve the volume expansion of silicon used as a high-capacity anode material. Si/CNT were prepared by electrostatic attraction of the positively charged Si and negatively charged CNT and then hydrothermal synthesis was performed to obtain the spherical Si/CNT/C composites. Poly(vinylidene fluoride) (PVDF), polyacrylic acid (PAA), and styrene butadiene rubber (SBR) were used as binders for electrode preparation, and coin cell was assembled using 1.0 M LiPF6 (EC:DMC:EMC = 1:1:1 vol%) electrolyte and fluoroethylene carbonate (FEC) additive. The physical properties of Si/CNT/C anode materials were analyzed using SEM, EDS, XRD and TGA, and the electrochemical performances of lithium-ion batteries were investigated by charge-discharge cycle, rate performance, dQ/dV and electrochemical impedance spectroscopy tests. Also, it was confirmed that both capacity and rate performance were significantly improved using the PAA/SBR binder and 10 wt% FEC-added electrolyte. It is found that Si/CNT/C have the reversible capacity of 914 mAh/g, the capacity retention ratio of 83% during 50 cycles and the rate performance of 70% in 2 C/0.1 C.

Permeation Properties of Surface Modified Nanofiltration Membrane (표면 개질된 나노복합막의 투과 특성)

  • Tak Tae-Moon;Park Hyung-Kiu;Jang Gyung-Gug
    • Membrane Journal
    • /
    • v.14 no.3
    • /
    • pp.207-217
    • /
    • 2004
  • In this study, we prepared nanofiltration membrane by applying the interfacial polymerization method as a way of manufacturing composite membranes. We have examined the effects of various preparation factors such as monomer concentration and composition, thermal curing condition, post treatment condition. In addition to preparation conditions, we also monitored the effects of operation conditions such as feed solution concentration and operation pressure on the permeation properties of the resulting nanofiltration membrane. We intended to increase the permeation rate of nanofiltration membrane by the enlargement of effective surface area using additives during interfacial polymerization step. With increasing the monomer concentration, membrane permeation rate are decreased with maintaining almost constant rejection. With respect to curing condition, with increasing the curing temperature both permeation rate and rejection are decreased. With increasing the ratio of MPD in amino monomer composition, permeation rate decreased drastically with high rejection. With increasing the feed solution concentration, both permeation rate and rejection decreased. Both permeation rates and rejection increased with increasing the operating pressure. Nanofiltration membrane have higher surface roughness with increasing additive concentration in the case of using MPD contained amine composition than using piperazine alone. Permeation rates are much lower than the nanofiltration membrane prepared by piperazine.

Preparation and Electrochemical Properties of Polymeric Composite Electrolytes Containing Organic Clay Materials (Organic Clay가 첨가된 고분자 복합 전해질의 제조 및 전기화학적 성질)

  • Kim, Seok;Hwang, Eun-Ju;Lee, Jea-Rock;Kim, Hyung-Il;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.31 no.4
    • /
    • pp.297-301
    • /
    • 2007
  • In this work, polymer/(layered silicate) nanocomposites (PLSN) based on poly (ethylene oxide) (PEO), ethylene carbonate (EC) as a plasticizer, lithium salt ($LiClO_4$), and sodium montmorillonite ($Na^+-MMT$) or organic montmorillonite (organic MMT) clay were fabricated. And the effects of organic MMT on the polymer matrix were investigated as a function of ionic conductivity. For the application to electrolytes an Li batteries, polymer electrolytes containing the organic nanoclays were used in this work. As a result, the spacing between layers and hydrophobicity of the organic nanoclays were increased, affecting on the exfoliation behaviors of the MMT layers in clay/PEO nanocomposites. From ion-conductivity results, the organic-MMT showed higher values than those of $Na^+-MMT$, and the MMT-20A sample that was treated by methyl dihydrogenated tallow ammonium, showed the highest conductivity in this system.

Preparation of Natural Polymer-CaP Composite Films (천연 고분자-칼슘 포스페이트 복합 박막 제조)

  • Kim, Ka-Eun;Mo, Man-Jin;Lee, Woo-Kul
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.112-116
    • /
    • 2005
  • We investigated the surface modification method for the preparation of organic-inorganic hybrid composite thin film. Gelatin obtained from the decomposition of collagen was allowed to adsorb in a polystyrene tissue culture dish for 2 h to from layers of gelatin. Supersaturated ionic solution of calcium and phosphorus was injected on the gelatin adsorbed layer to form calcium phosphate thin film. During the initial period of incubation, nucleates were formed. With increase of the incubation time, CaP (calcium phosphate) thin film grew on the surface of the culture dish. The gelatin/CaP thin film displayed the highly porous three-dimensional surface structure. Attenuated, total reflectance Fourier transform, infra-red spectroscopy (ATR-FTIR) was used to analyze the chemical properties of CaP film. The analysis demonstrated that the CaP film formed at initial period of treatment appeared to be amorphous. With increase of incubation time, the crystallinity of the film was slightly increased, but the presence of the peaks for the low crystalline CaP confirmed that the CaP thin film prepared in this study was poorly crystallized.