• Title/Summary/Keyword: 복운모 화강암

Search Result 42, Processing Time 0.027 seconds

Petrological Characteristics of Two-Mica Granites : Examples from Cheongsan, Inje-Hongcheon, Yeongju and Namwon areas (복운모 화강암의 암석화학적 특징 : 청산, 인제-홍천, 영주 및 남원지역의 예)

  • 좌용주
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.210-225
    • /
    • 1997
  • From their general natures of peraluminous, S-type and ilmenite-series granites, two-mica granites in the Cheongsan, Inje-Hongcheon, Yeongju and Namwon areas were originated from crust-derived granitic magma and solidified under reducing condition. Each two-mica granite in Inje-Hongcheon and Namwon districts was differentiated from the the residual magma of porphyric biotite granite and high Ti/Mg biotite granite, respectively. The genetic relationships between two-mica granite and porphyritic biotite granite in Chenongsan district and between two-mica granite and biotite granodiorite in Yeongju district are ambiguous. In Namwon district granitic magmas were water-saturated and possible water solubilities in magmas were more than 5.8wt.%. In Yeongju district two-mica granitic magma was nearly water-saturated and showed possible water solubilities between 2.4~5.8wt.%. Two-mica granitic magmas in Cheongsan and Inje-Hongcheon districts were water-undersaturated. Pressure-dependent minimum melt compositions (0.5~2kb) and petrographic textures of two-mica granites in Inje-Hongcheon and Yeongju districts represent that the granites intruded and solidified at shallow level, whereas those in Cheongsan and Namwon districts exhibit relatively deeper level of granitic intrusion (2-3kb). The intersection of granite-solidus/muscovite stability indicates that magmatic primary muscovite can be crystallized from the water-saturated magma above 1.6kb (ca. 6km), but below the pressure muscovite can be formed by the subsolidus reaction. On the other hand, more pressure would be necessary for the crystallization of primary muscovite from the water-undersaturated magma. This pressure condition can explain the occurrence of primary and secondary muscovites from the two-mica granites in the areas considered. The experimental muscovite stability must be cautious of the application to examine the origin of muscovite. The muscovite stability can move toward high temperature field with adding of Ti, Fe and Mg components to the octahedral site of pure muscovite end member.

  • PDF

쥬라기 대전 화강암 시추코아의 암석 지화학 연구

  • 홍영국;홍세선
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.298-301
    • /
    • 2003
  • 한국지질자원연구원 내를 중심으로 유성일대에 분포하는 화강암은 대전지역을 관입한 화강암체의 일부로서 대부분 백운모를 함유한 복운모화강암으로 구성된다. 이 화강암은 주변에 분포하는 편상 화강섬록암이나 흑운모화강암에 비해 옥천층군의 잔류물을 거의 함유하지 않으며 암맥상의 폐그마타이트가 관입된다. 이 화강암은 중리질 내지 세립질이며 백운모가 흑운모보다 더 우세하거나 비슷하게 산축되는 등 다른 암석류에 비해 백운모를 다량 함유하는 것이 특징이다. (중략)

  • PDF

Geological Review on the Distribution and Source of Uraniferous Grounwater in South Korea (국내 고함량 우라늄 지하수의 분포와 기원에 관한 지질학적 고찰)

  • Hwang, Jeong
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.593-603
    • /
    • 2018
  • The most of groundwater with high U-concentration occur in the Jurassic granite of Gyeonggi massif and Ogcheon belt, and some of them occur in the Cretaceous granite of Ogcheon belt. On the contrary, they do not occur in the Jurassic granite of Yeongnam massif and the Cretaceou granite of Gyeongsang basin. The Jurassic and Cretacous granite, the host rock of high U-groundwater, were resulted from parental magma with high ratio of crustal material and highly differentiated product of fractional crystalization. These petrogenetic characteristics explain the geological evidence for preferential distribution of uraniferous groundwater in each host rock. It were reported recently that high U-content, low Th/U ratio and soluble mineral occurrence of uraninite in the two-mica granite of Daejeon area which have characteristics of S-type peraluminous and highly differntiated product. It is the mineralogical-geochemical evidences supporting the fact that the two-mica granite is the effective source of uranium in groundwater. The biotite granite and two-mica granite of Jurassic age were reported as biotite granite in many geological map even though two-mica granite occur locally. This fact suggest that the influence of two-mica granite can not be ignored in uraniferous groundwater hosted by biotite granite.

The Origin and Age of the Orbicular Granite Gneiss in Wangjungri, Muju (무주 왕정리 일대 구상 화강편마암의 성인과 형성시기)

  • Oh, Chang Whan;Lee, Byung Choon;Yi, Keewook
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.117-135
    • /
    • 2013
  • Orbicular granite gneisses occur as a xenolith within two-mica leucogranites, together with early Paleoproterozoic metasedimentary xenoliths, in Wangjeong-ri, Muju area. The whole-rock chemistries and SHRIMP zircon Pb/U ages of the leucogranites indicate that they are S-type granitoids formed in the continental tectonic setting at $1875{\pm}75$ Ma. The SHRIMP age of monazites from the orbicular granite gneiss gives $1867{\pm}4$ Ma as a metamorphic age which is similar to the intrusion age of the two-mica leucogranite within the error range. The similar ages between zircons and monazites represent that the orbicular granite gneisses formed by metamorphism during the intrusion of the two-mica leucogranite; the metasedimetary xenoliths which sank within the parent magma of leucogranites were metamorphosed into orbicular granite gneisses by thermal metamorphism ($650-740^{\circ}C$, 4-6.5 kbar) due to the heat supplied from surrounding magma. During the thermal metamorphism, the core of orbicular granite gneiss mainly consisting of cordierite formed, and in some orbicular granitic gneisses, the leucocratic melt formed by melting of quartz and plagioclase in the core, squeezed out from core and crystallized around the core forming outer rim. The hydrothermal fluid at the late stage of magma differentiation penetrated into the orbicular granite gneisses resulting pinitization of cordierite into chlorite and sericite. As Muju orbicula granite gneiss was formed from sedimentary rocks, it is more appropriate to be called Muju orbicula granitic gneiss.

Occurrence of U-minerals and Source of U in Groundwater in Daebo Granite, Daejeon Area (대전지역 대보 화강암내 우라늄 광물의 산출상태와 지하수내 우라늄의 기원)

  • Hwang, Jeong
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.399-407
    • /
    • 2013
  • Some groundwater in Korea contains high U concentrations, especially where two-mica granite occurs in the Daejeon area. The elemental U in the two-mica granite is lower than that in normal granites elsewhere in the world, and U-minerals have yet to be reported in the two-mica granite in the Daejeon area. This study focuses on investigating the occurrence of U-minerals serving as the U source in groundwater. In situ gamma ray spectrometry and mineralogical analyses using EPMA were performed. U-count anomalies were identified in a granitic dyke and in hydrothermally altered granite. Uraniferous granitic dykes occur along the contact zone between the two-mica granite and mica-schist. The uraniferous parts within the two-mica granite are developed in the hydrothermally altered zone, which contains numerous quartz veinlets within a fracture zone. Hydrothermal alteration is dominated by potassic and prophylitic alteration. Uraninite is a common U-mineral in granitic dykes and hydrothermally altered granite. Coffinite and uranophane occur in the hydrothermally altered granite. All of these U-minerals are commonly accompanied by hydrothermal alteration minerals such as muscovite, chlorite, epidote, and calcite. It is concluded that granitic dyke and hydrothermally altered granite are the main source rocks of U in groundwater.

Mineral chemistry and major element geochemistry of the granitic rocks in the Cheongsan area (청산 일대에 분포하는 화강암류의 광물조성과 주성분원소 지구화학)

  • 사공희;좌용주
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.185-209
    • /
    • 1997
  • Granitic rocks in the Cheongsan area cosist of three plutons-Baegrog granodiorite, Cheongsan porphyritic granite, and two mica granite. Amphilboles from the Baegrog granodiorite belong to the calcic amphilbole group and show compositional variations from magnesio-hornblende in the core to actinolitic hornblende in the rim. Biotites from the three granites represent intermediate compositions between phlogopite and annite. Muscovites from the two mica granite are considered to be primary muscovite in terms of the occurrence and mineral chemistry. Each granitic rock reveals systematic variation of major oxide contents with $SiO_2$. Major oxide variation trends of the Baegrog granodiorite are fairly different from those of Cheongsan porphyritic granite and two mica granite. The latter two granitic rocks are also different with each other in variation trends for some oxides. Thus three granitic rocks in the Cheongsan area were solidifield from the independent magmas of chemically different, heterogeneous origin. The granitic rocks in the area show calc-alkaline nature. The whole rock geochemistry shows that the Baegrog granodiorite and Cheongsan porphyritic granite belong to metaluminous, I-type granite, whereas the two mica granite to peraluminous, I/S-type granite. The opaque mineral contents and magnetic susceptibility represent that the granitic rocks in the area are ilmenite-series granite, indicating that each magma was solidified under relatively reducing environment. The tectonic environment of the granitic activity in the area seems to have been active continental margin. Alkali feldspar megacryst in the Cheongsan porphyritic granite is considered to be magmatic, judging from the crystal size, shape, arrangement, and distribution pattern of inclusions. The petro-graphical characteristics of the Cheongsan porphyritic granite can be explained by two stage crystallization. Under the smaller degree of undercooling the alkali feldspar megacrysts rapidly grew owing to slow rate of nucleation and fast growth rate. At the larger degree of undercooling the nucleation rate and density drastically increased and the small crystals of the matrix were formed.

  • PDF

Uranium and Radon Concentrations in Groundwater of the Daejeon Granite Area: Comparison with Other Granite Areas (대전 화강암지역 지하수의 우라늄과 라돈 함량: 다른 화강암지역과의 비교)

  • Yun, Uk;Kim, Moon Su;Jeong, Do Hwan;Hwang, Jae Hong;Cho, Byong Wook
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.631-643
    • /
    • 2018
  • Uranium and radon concentrations in groundwater from 80 wells from Daejeon area were measured to determine the range of concentrations according to the geology. The median uranium content of groundwater was $11.14{\mu}g/L$ for the two-mica granite, $0.90{\mu}g/L$ for the biotite granite, and $0.47{\mu}g/L$ for the Ogcheon group. The median radon content of groundwates was 114.3 Bq/L for the two-mica granite, 61.6 Bq/L for the biotite granite, and 42.2 Bq/L for the Ogchon group, respectively. The uranium content of two-mica granite is 3.78 mg/ kg, which is slightly higher than that of biotite granite 3.20 mg/kg. However, the uranium content in groundwatewr of two-mica granite groundwater is much higher than that of biotite granite. This can be explained by the fact that the two-mica granite is vulnerable to weathering than biotite granite, so uranium in mineral is easily leached into groundwater. The exceeding rate of samples having uranium content above $30{\mu}g/L$ in granite area was 23.8%, which is higher than that of 6.7% in Jurassic granite in Korea. On the other hand, the exceeding rate of samples having radon content above 148 Bq/L in granite rate area was 31.0% which is similar to that of Jurassic granite area of 31.7%.

The Geochemistry of Yuksipryeong Two-Mica Leucogranite, Yeongnam Massif, Korea (영남육괴내 육십령 복운모화강암에 대한 지화학적 연구)

  • Koh, Jeong-Seon;Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.119-134
    • /
    • 2003
  • Yuksipryeong two-mica granite presents strongly peraluminous characteristics in both mineralogy and geochemistry. It has high aluminum saturation index with 1.15∼l.20 and high corundum with 2.20∼2.98 wt% CIPW norm. As the color index is <16% and FeO$\^$T/+ MgO + TiO$_2$is average 1.9 wt%, it corresponds to leucogranite. Yuksipryeong two-mica leucogranite shows negative linear trend for TiO$_2$, Al$_2$O$_3$, FeO, Fe$_2$O$_3$, MgO, CaO, K$_2$O, P$_2$O$\_$5/, Rb, Ba, and Sr as SiO$_2$increases, and the positive relation of Zr and Th, which result from feldspar, biotite, apatite and zircon fractionation. Pegmatitic dike has higher SiO$_2$and P$_2$O$\_$5/, but lower another major elements. Yuksipryeong two-mica leucogranite has lower Rb, but higher Ba and Sr than Manaslu, Hercynian two-mica leucogranites, and S-type granites in Lachlan Fold Belt. Pegmatitic dike has higher Rb and Nb but lower Ba, Sr, Zr, Th, and Pb contents than Yuksipryeong two-mica leucogranite, resulting in removing or mobilizing for some trace elements from the granitic melt. Yuksipryeong two-mica leucogranite has total REEs with 95.7∼l23.3 ppm, and chondrite-normalized REE pattern is very steep ((La/Yb)$\_$N/ = 6.9∼24.8), light REEs (LREEs)-enriched End heavy REEs (HREEs)- depleted pattern with low to moderate Eu anomalies (Eu/Eu*= 0.7∼0.9). While pegmatitic dike has low total REEs with 7.0 ppm, and chondrite-normalized REE pattern is flat-pattern ((La/Yb)$\_$N/ = 2.1) with strong negative Eu anomalies (Eu/Eu*= 0.2). The melt compositions having formed two-mica leucogranites depend on not only the source rock but also the amounts of the residual remaining after melting of source rocks. The CaO/Na$_2$O and Rb/Sr-Rb/Ba ratios depend mainly on the composition of source rocks in the strongly peraluminous granite, that is, plagioclase/clay ratio of the source rocks. Yuksipryeong two-mica leucogranite has higher CaO/Na$_2$O and lower Rb/Sr-Rb/Ba ratios than Manaslu and Hercynian two-mica leucogranites (Millevaches and Gueret) derived from clay-rich, plagioclase-poor (polite), which suggest that the probable source rocks for Yuksipryeong two-mica leucogranite is clay-poor, plagioclase-rich quartzofeldspathic rocks. As the concentrations of Al$_2$O$_3$remain nearly constant but those of TiO$_2$increases as increasing temperature in the strong peraluminous melt, the Al$_2$O$_3$/TiO$_2$ratio may reflect relative temperature at which the melts have formed. Comparing the polite-derived Manaslu and Hercynian two- mica leucogranites, Manaslu two-mica leucogranite has higher Al$_2$O$_3$/TiO$_2$ratio than latter, and its melt have formed at relatively lower temperature ($\leq$ 875$^{\circ}C$) than Hercynian two-mica leucogranites. Likewise, comparing the quartzofeldspathic rock-derived granites, Yuksipryeong two-mica granite has higher Al$_2$O$_3$/TiO$_2$, ratio than S-type granites in Lachlan Fold Belt (>875$^{\circ}C$). The melt formed Yuksipryeong two-mica leucogranite are considered to have been formed at temperature at below the maximum 875$^{\circ}C$C$.

Geochemical Studies on the Petrogenesis of Jurassic Peraluminaous Granitic Rocks in the area of Gwangdeoksan in the Northern Gyeonggi Massif (경기육괴 북부 광덕산 일대에 분포하는 쥐라기 고알루미나 화강암질암의 성인에 대한 지화학적 연구)

  • Han, Chung Hee;Jeon, Hye Su;Park, Young-Rok
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.325-337
    • /
    • 2020
  • The Jurassic granitic rocks in the area of Gwangdeoksan located along the boundary between Hwacheon and Cherwon in northern Gyeonggi Massif consist of two-mica granite, garnet-bearing two-mica granite, mica-granite, and porphyritic biotite granite. These granitic rocks are calc-alkaline series and plotted in peraluminious domain in A/CNK vs. A/NK diagram. Petrographical and geochemical data indicate that the porphyritic biotite granite which intruded at the last period originated from distinct parental magma from two-mica granite, garnet-bearing two-mica granite, and mica-granite. On the basis of Rb/Sr vs. Rb/Ba diagram and Al2O3/TiO2 vs. CaO/Na2O, it is inferred the porphyritic biotite granite originated from protolith with less pelitic composition than 3 other granitic rocks. The enriched values of lithophile elements of Cs, Rb, and Ba and negative trough of Nb, P, Ti on spider diagram suggest that the peraluminous Jurassic granitic rocks in Gwangdeoksan area formed in subduction tectonic environment. Whole-rock zircon saturation thermometer indicates that the granitic rocks in the study area were melted at 692-795℃.

Mineralogy, Geochemistry, and Evolution of the Mn-Fe Phosphate Minerals within the Pegmatite in Cheolwon, Gyeonggi Massif (경기육괴 철원지역 페그마타이트 내 망간-철 인산염광물의 광물-지화학적 특징 및 진화과정)

  • Kim, Gyoo Bo;Choi, Seon Gyu;Seo, Jieun;Kim, Chang Seong;Kim, Jiwon;Koo, Minho
    • Economic and Environmental Geology
    • /
    • v.50 no.3
    • /
    • pp.181-193
    • /
    • 2017
  • Mn-Fe phosphate mineral complexes included within the pegmatite are observed at Jurassic Cheolwon two-mica granite in Gyeonggi Massif, South Korea. The genetic evolution between the Cheolwon two-mica granite and pegmatite, and various trend of Mn-Fe phosphate minerals is made by later magmatic, hydrothermal, and weathering process based on mineralogical, geochemical analysis. The Cheolwon two-mica granite is identified as S-type granite, considering its chemical composition (metaluminous ~ peraluminous), post-collisional environment, low magnetic susceptibility, and existence of biotite and muscovite. The K-Ar age (ca. 153 Ma) of pegmatite is well coincident with age of the Cheolwon two-mica granite ($151{\pm}4Ma$). It indicates that these two rocks are originated from the same magma. Pegmatite indicates the LCT geochemical signature, and was classified as muscovite-rare element class / Li subclass / beryl type / beryl-columbite-phosphate subtype pegmatite. The triplite $\{(Fe^{2+}{_{0.4}},Mn_{1.6})(PO_4)(F_{0.9})\}$ is dominant phosphates in later magmatic stage which partly altered to leucophosphite $\{KFe^{3+}{_2}(PO_4)_2OH{\cdot}2H_2O\}$ and jahnsite $\{(Fe^{3+}{_{0.7}},Mn_{2.3})(PO_4)_2OH{\cdot}4H_2O\}$ by hydrothermal alteration. In particular, near fractures, the triplite has been separatelty replaced by the phosphosiderite ($Fe^{3+}PO_4{\cdot}2H_2O$) and Mn-oxide minerals during weathering stage.