• Title/Summary/Keyword: 복소 블라인드 등화

Search Result 5, Processing Time 0.019 seconds

Complex-Channel Blind Equalization Using Cross-Correntropy (상호 코렌트로피를 이용한 복소 채널 블라인드 등화)

  • Kim, Nam-Yong
    • Journal of Internet Computing and Services
    • /
    • v.11 no.5
    • /
    • pp.19-26
    • /
    • 2010
  • The criterionmaximizing cross-correntropy (MCC) of two different random variables has yielded superior performance comparing to mean squared error criterion. In this paper we present a complex-valued blind equalizer algorithm for QAM and complex channel environments based on cross-correntropy criterion which uses, as two variables, equalizer output PDF and Parzen PDF estimate of a self-generated symbol set. Simulation results show significantly enhanced performance of symbol-point concentration with no phase rotation in complex-channel communication.

Complex-Channel Blind Equalization using Euclidean-Distance Algorithms with Decision-Directed Modes (Decision-Directed 모드와 유클리드 거리 알고리듬을 사용한 복소채널의 블라인드 등화)

  • Kim, Namyong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.3
    • /
    • pp.73-80
    • /
    • 2010
  • Complex-valued blind algorithms which are based on constant modulus error and Euclidian distance (ED) between two probability density functions show relatively poor performance in spite of the advantages of information theoretic learning since the inherent characteristics of the constant modulus error prevent the algorithm from coping with the symbol phase rotation caused by the complex channels. In this paper, we show that the symbol phase rotation problem can be avoided and the advantages of information theoretic learning can be preserved by introducing decision-directed mode to the blind algorithm whenever the equalizer output power lies in the neighborhood of multi-modulus levels. Simulation results through MSE convergence and constellation comparison for severely distorted complex channels show significantly enhanced performance of symbol-point concentration and no phase rotation problems caused by the complex channel models.

  • PDF

PDF-Distance Minimizing Blind Algorithm based on Delta Functions for Compensation for Complex-Channel Phase Distortions (복소 채널의 위상 왜곡 보상을 위한 델타함수 기반의 확률분포거리 최소화 블라인드 알고리듬)

  • Kim, Nam-Yong;Kang, Sung-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.5036-5041
    • /
    • 2010
  • This paper introduces the complex-version of an Euclidean distance minimization algorithm based on a set of delta functions. The algorithm is analyzed to be able to compensate inherently the channel phase distortion caused by inferior complex channels. Also this algorithm has a relatively small size of Gaussian kernel compared to the conventional method of using a randomly generated symbol set. This characteristic implies that the information potential between desired symbol and output is higher so that the algorithm forces output more strongly to gather close to the desired symbol. Based on 16 QAM system and phase distorted complex-channel models, mean squared error (MSE) performance and concentration performance of output symbol points are evaluated. Simulation results show that the algorithm compensates channel phase distortion effectively in constellation performance and about 5 dB enhancement in steady state MSE performance.

Complex-Channel Blind Equalization using Euclidean Distance Algorithms with a Self-generated Symbol Set and Kernel Size Modification (자가 발생 심볼열과 커널 사이즈 조절을 통한 유클리드 거리 알고리듬의 복소 채널 블라인드 등화)

  • Kim, Nam-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.1A
    • /
    • pp.35-40
    • /
    • 2011
  • The complex-valued blind algorithm based on a set of randomly generated symbols and Euclidean distance can take advantage of information theoretic learning and cope with the channel phase rotation problems. On the algorithm, in this paper, the effect of kernel size has been studied and a kernel-modified version of the algorithm that rearranges the forces between the information potentials by kernel-modification has been proposed. In simulation results for 16 QAM and complex-channel models, the proposed algorithm show significantly enhanced performance of symbol-point concentration and no phase rotation problems caused by the complex channel models.

A Study on Least Mean Fourth (LMF) and Least Mean Squares-Fourth (LMSF) Blind Equalization Algorithm (최소평균 사제곱 (LMF) 및 최소평균 제곱과 사제곱을 혼합한 형태 (LMSF)의 블라인드 등화 알고리즘에 관한 연구)

  • Yoon, Tae-Sung;Byun, Youn-Shik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.38-44
    • /
    • 1997
  • In this study, wer derived LMF-Sato, LMSF-Sato complex blind equalization algorithms for complex data. And then, the convergence rates, the convergence characteristics at the steady state and the stability of the proposed LMF and LMSF blind equalization algorithms are compared with those of LMS-Sato blind equalization algorithm. In simulations with 16-QAM data, LMF-Sato and LMSF-Sato algorithms showed better performance comparing with LMS-Sato algorithm generally. When the initial estimation errors of the weights of the equalizer are large, LMF-Sato algorithm showed ill characteristic in stability. However, LMSF-Sato algorithm has good covergence characteristics and preserves robustness.

  • PDF