• Title/Summary/Keyword: 복사원크기효과

Search Result 3, Processing Time 0.019 seconds

Size-of-source Effect and Self-radiation Effect of an Infrared Radiation Thermometer (적외선 복사온도계의 복사원 크기효과 및 자기복사효과)

  • Yoo, Yong-Shim;Kim, Bong-Hwak;Park, Chul-Woung;Park, Seung-Nam
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.4
    • /
    • pp.133-138
    • /
    • 2010
  • All radiation thermometers have a size-of-source effect (SSE) and a self-radiation effect (SRE). The SSE,defined as dependence of the detector signal of a radiation thermometer on the diameter of a source, is critically dependent on the wavelength since diffraction is the main cause. In this paper, we have measured the SSE and the SRE of TRT2 (Transfer Radiation Thermometer 2, HEITRONICS) widely used as a transfer standard in low and middle temperature range. At $300^{\circ}C$, The radiation temperature difference between the 60 mm diameter blackbody and 10 mm diameter blackbody due to the SSE was estimated to be $3.5^{\circ}C$ in low temperature mode ($8-14\;{\mu}m$) and $0.5^{\circ}C$ in middle temperature mode ($3.9\;{\mu}m$). In addition, the measured radiation temperature difference of the blackbody due to the SRE was found to be 110 mK when the body temperature change of TRT2 was set at $2.6^{\circ}C$.

Establishment of Comparison Calibration Equipment for Infrared-radiation Thermometers Below ℃ (℃ 이하 적외선 복사온도계 비교 교정장치 구축)

  • Yoo, Yong Shim;Kim, Bong-Hak
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.2
    • /
    • pp.70-76
    • /
    • 2018
  • Comparison calibration equipment for infrared-radiation thermometers below $0^{\circ}C$ has been established, using a TRT2 (transfer radiation thermometer 2, HEITRONICS) as a transfer standard and an ME30 (Model: ME30, HEITRONICS) as a variabletemperature blackbody. The TRT2 was calibrated using three fixed points (Ice ($0.01^{\circ}C$), In ($156.5985^{\circ}C$), and Sn ($231.928^{\circ}C$)) and the Planckian Sakuma-Hattori equation, and including the interpolation and extrapolation errors at $-50^{\circ}C$ in the uncertainty. The pneumatic lid is installed upon opening of the ME30 and is opened for only 30 seconds for measuring the radiation temperature, which prevents formation of ice in the ME30 and also reduces the calibration time to half. The farther away from the $0{\sim}232^{\circ}C$ region, the larger the uncertainty of the comparison calibration equipment becomes. The expanded uncertainty of the comparison calibration equipment was estimated as 0.26 K at $-20^{\circ}C$.

Analysis of Microclimate Impact According to Development Scenarios of Vacant Land in Downtown Seoul - A Comparison of Wind Speed and Air Temperature - (서울 도심 공지의 개발 시나리오에 따른 미기후 영향 분석 - 풍속 및 기온 비교 -)

  • Baek, Jiwon;Park, Chan;Park, Somin;Choi, Jaeyeon;Song, Wonkyong;Kang, Dain;Kim, Suryeon
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.2
    • /
    • pp.105-116
    • /
    • 2021
  • In the city of high population density crowded with buildings, Urban Heat Island (UHI) is intensified, and the city is vulnerable to thermal comfort. The maintenance of vacant land in downtown is treated as a factor that undermines the residential environment, spoils the urban landscape, and decreases the economic vitality of the whole region. Therefore, this study compared the effects on microclimate in the surrounding area according to the development scenarios targeting the vacant land in Songhyeon-dong, Jongno-gu, Seoul. The status quo, green oriented, building oriented and green-building mediation scenarios were established and ENVI-met was used to compare and analyze the impact of changes in wind speed, air temperature and mean radiant temperature (MRT) within 1 km of the target and the target site. The result of inside and 1 km radius the targeted area showed that the seasonal average temperature decreased and the wind speed increased when the green oriented scenario was compared with the current state one. It was expected that the temperature lowered to -0.73 ℃ or increased to 1.5 ℃ in summer, and the wind speed was affected up to 210 meters depending on the scenario. And it was revealed that green area inside the site generally affects inside area, but the layout and size of the buildings affect either internal and external area. This study is expected to help as a decision-making support tool for developing Songhyeon-dong area and to be used to reflect the part related to microclimate on the future environmental effects evaluation system.