• Title/Summary/Keyword: 복사교정

Search Result 31, Processing Time 0.03 seconds

Measure Radiation and Correct Radiation in IR camera Image (적외선 카메라를 이용한 복사량 계측 및 교정 연구)

  • Jeong, Jun-Ho;Kim, Jae-Hyup
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.4
    • /
    • pp.57-67
    • /
    • 2015
  • The concept of detection and classification of objects based on infrared camera is widely applied to military applications. While the object detection technology using infrared images has long been researched and the latest one can detect the object in sub-pixel, the object classification technology still needs more research. In this paper, we present object classification method based on measured radiant intensity of objects such as target, artillery, and missile using infrared camera. The suggested classification method was verified by radiant intensity measuring experiment using black body. Also, possible measuring errors were compensated by modelling-based correction for accurate radiant intensity measure. After measuring radiation of object, the model of radiant intensity is standardized based on theoretical background. Based on this research, the standardized model can be applied to the object classification by comparing with the actual measured radiant intensity of target, artillery, and missile.

Establishment of Comparison Calibration Equipment for Infrared-radiation Thermometers Below ℃ (℃ 이하 적외선 복사온도계 비교 교정장치 구축)

  • Yoo, Yong Shim;Kim, Bong-Hak
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.2
    • /
    • pp.70-76
    • /
    • 2018
  • Comparison calibration equipment for infrared-radiation thermometers below $0^{\circ}C$ has been established, using a TRT2 (transfer radiation thermometer 2, HEITRONICS) as a transfer standard and an ME30 (Model: ME30, HEITRONICS) as a variabletemperature blackbody. The TRT2 was calibrated using three fixed points (Ice ($0.01^{\circ}C$), In ($156.5985^{\circ}C$), and Sn ($231.928^{\circ}C$)) and the Planckian Sakuma-Hattori equation, and including the interpolation and extrapolation errors at $-50^{\circ}C$ in the uncertainty. The pneumatic lid is installed upon opening of the ME30 and is opened for only 30 seconds for measuring the radiation temperature, which prevents formation of ice in the ME30 and also reduces the calibration time to half. The farther away from the $0{\sim}232^{\circ}C$ region, the larger the uncertainty of the comparison calibration equipment becomes. The expanded uncertainty of the comparison calibration equipment was estimated as 0.26 K at $-20^{\circ}C$.

Calculation of correction coefficients for the RedEdge-MX multispectral camera through intercalibration with a hyperspectral sensor (초분광센서와의 상호교정을 통한 RedEdge-MX 다분광 카메라의 보정계수 산출)

  • Baek, Seungil;Koh, Sooyoon;Kim, Wonkook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.707-716
    • /
    • 2020
  • Spectroradiometers have recently been drawing great attention in earth observing communities for its capability for obtaining target's quantitative properties. In particular, light-weighted multispectral cameras are gaining popularity in many field domains, as being utilized on UAV's. Despite the importance of the radiometric accuracy, studies are scarce on the performance of the inexpensive multispectral camera sensors that have various applications in agricultural, vegetation, and water quality analysis. This study conducted assessment of radiometric accuracy for MicaSense RedEdge-MX multispectral camera, by comparing the radiometric data with an independent hyperspectral sensor having NIST-traceable calibration quality. The comaprison showed that radiance from RedEdge-MX is lower than that of TriOS RAMSES by 5 to 16% depending on the bands, and the irradiance from RedEdge-MX is also lower than RAMSES by 1~20%. The correction coefficients for RedEdge-MX alculated through the 1-st and the 3-rd order regression analysis were presented as a result of the study.

Development of Laser Power Meter Calibration System with 12-diode Laser Sources (12개 다이오드 레이저를 활용하는 레이저 복사출력계 교정시스템 개발)

  • Kanghee Lee;Jae-Keun Yoo;In-Ho Bae;Seongchong Park;Dong-Hoon Lee
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.2
    • /
    • pp.61-70
    • /
    • 2024
  • We demonstrate a laser power meter calibration system based on 12-diode laser sources coupled to single-mode fibres in a wavelength range from 400 to 1,600 nm. In our system, three laser power controllers ensure that the output power uncertainty of all laser sources is less than 0.1% (k=2). In addition, all laser beams are adjusted to have similar beam sizes of approximately 2 mm (1/e2-width) at the measurement position to minimise unmeasured laser power on a detector. As a reference detector, we use an integrating sphere combined with silicon and indium gallium arsenide photodiodes to minimise the non-uniformity and non-linearity of responsivity. The minimum uncertainty of the calibration system is estimated to be 1.1% (k=2) for most laser wavelengths.

Thermal Performance Test of the On-Board Blackbody System in the orbital environment for Non-Uniformity Correction of an Infrared Sensor (적외선 센서 교정용 위성 탑재 흑체 시스템의 궤도 환경 열성능 평가 시험)

  • Pil-Gyeong, Choi;Hye-In, Kim;Hyun-Ung, Oh;Byung-Cheol, Yoo;Kyoung-Muk, Lee;Jin-Suk, Hong
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.90-98
    • /
    • 2022
  • The output of an infrared (IR) sensor mounted on an EO/IR payload is known to change during a mission period in an orbital environment. As it is required to calibrate the output of the IR sensor periodically to obtain high-quality images, an on-board black body system is mounted on the payload. All systems operating in the space environment require performance tests on ground to verify the target performance in the orbital environment. Therefore, it is also required to test the black body system to verify the performance of the surface temperature uniformity and the estimated representative temperature error within the target temperature range in the operating environment. In this study, calibration of the estimated representative temperature error and verification of the thermal performance of the black body system were conducted by performed a performance test in the thermal vacuum chamber applying deep space radiation cooling effect of an orbital environment.

The Enhancement of Antenna Near-Field Measurements Using Near-Field to Far-Field Transform Algorithms Based on the Lorentz Reciprocity Theorem (로렌츠 상호작용 원리와 근역장-원역장 변환 공식을 이용한 안테나 근역장 측정 알고리즘 개선)

  • Cho, Yong-Heui
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.2
    • /
    • pp.51-58
    • /
    • 2006
  • The enhancement of antenna near-field measurements is obtained using a general probe compensation equation based on the Lorentz reciprocity theorem and reciprocity notation. The probe compensation is an essential process of the near-field to far-field transformations. Applying the equation proposed in this paper to a planar scanning for a rectangular horn antenna shows that our near-field radiation pattern is similar to that of a far-field and our theory is very simple to use and suitable for most practical applications.

  • PDF

Realization of a detector-based Candela scale traceable to the absolute cryogenic radiometer (절대 극저온 복사계에 소급된 검출기 기반 칸델라 눈금의 실현)

  • 박승남;이동훈;김용완;정영붕;이인원
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.280-281
    • /
    • 2003
  • 광도 측정의 기본단위인 칸델라 눈금을 확립하는 방법에는 흑체에서 방출되는 분광복사휘도를 기준으로 사용하는 광원 기반 방법과 극저온 절대 복사계(absolute cryogenic radiometer; ACR)로 부터 출발하여 실현하는 검출기 기반의 두 가지 방법이 사용된다. ACR를 사용하면서 검출기 기반 칸델라 눈금의 불확도가 흑체의 온도 측정 불확도로부터 전파되는 불확도 보다 휠씬 작기 때문에 각국의 국가 측정 표준 대표기관에서 검출기 기반 칸텔라 눈금을 실현하고, 교정이나 측정 서비스를 제공하고 있다. (중략)

  • PDF

Calibration of Pyranometer with Solar Radiation Intercomparison Observation at Research Institute for Radiation-Satellite, Gangneung-Wonju National University (강릉원주대학교 복사-위성연구소에서 실외 비교관측을 통한 전천일사계 교정)

  • Jee, Joon-Bum;Zo, Il-Sung;Kim, Bu-Yo;Lee, Kyu-Tae;Yoo, Myeong-Seon;Lee, Yong-Joo;Jang, Jeong-Pil
    • Journal of the Korean earth science society
    • /
    • v.40 no.2
    • /
    • pp.135-148
    • /
    • 2019
  • Although the technology for the observation of solar radiation is rapidly developing worldwide, in Korea the guidelines for comparing observations of solar radiation are only now under preparation. In this study, a procedure for intercomparison observations of solar radiation was established which accounts for meteorological and geographical conditions. The intercomparisons among observations by national reference pyranometers were carried out at the Asia Regional Radiation Center, Japan, in 2017. Recently, the result of the calibration of the reference pyranometer of the Korean Meteorological Administration (KMA) has been reported. Using the KMA pyranometer as a reference, comparisons between observations and calibrations were carried out for the standard (B to J) pyranometers of the KMA, and for the reference (A) and the standard pyranometers of the Gangneung-Wonju National University. The intercomparisons were carried out between October 24 and October 25, 2018. The sensitivity constants were adjusted according to the results of the data analysis performed on October 24. On October 25, a post-comparison observation was also performed, and the data of the participating pyranometers were verified. The sensitivity constants were calculated using only data corresponding to a solar radiation of $450.0W\;m^{-2}$ or higher. The B and I pyranometers exhibited a small error (${\pm}0.50W\;m^{-2}$), and the applied sensitivity constants were in the range $0.08-0.16{\mu}V(W\;m^{-2})^{-1}$. For the C pyranometer, the adjustment of the sensitivity constant was the largest, i.e., $-0.16{\mu}V(W\;m^{-2})^{-1}$. As a result, the nine candidate pyranometers could be calibrated with an average error of $0.06W\;m^{-2}$ (0.08%) with respect to the KMA reference, which falls within the allowed tolerance of ${\pm}1.00%$ (or ${\pm}4.50W\;m^{-2}$).

Improvement of Spatial Radiance Uniformity of Small Integrating Spheres (소형 적분구의 공간 복사 휘도 균일도 향상 연구)

  • Yong Shim Yoo;Dong Joo Shin;Bong Hak Kim
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.5
    • /
    • pp.202-209
    • /
    • 2023
  • A KRISS-type small integrating sphere with a high spatial radiance uniformity was made using pressed polytetrafluoroethylene (PTFE) and a reflective rod to calibrate the spectral radiance responsivity of absolute radiant thermometers. The spatial radiance uniformity of the KRISS-type small integrating sphere was ±0.009%, five times higher than the best value reported by foreign national metrology institutions thus far. In addition, we improved the spatial radiance uniformity of a commercial sintered PTFE integrating sphere by a factor of 10.