• Title/Summary/Keyword: 복강 세척액

Search Result 19, Processing Time 0.032 seconds

Pretreatment of Diltiazem Ameliorates Endotoxin-Induced Acute Lung Injury by Suppression of Neutrophilic Oxidative Stress (내독소로 유도된 급성폐손상에서 Diltiazem 전처치가 호중구성 산화성 스트레스에 미치는 효과)

  • Jang, Yoo Suk;Lee, Young Man;Ahn, Wook Su;Lee, Sang Chae;Kim, Kyung Chan;Hyun, Dae Sung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.60 no.4
    • /
    • pp.437-450
    • /
    • 2006
  • Background : Acute respiratory distress syndrome (ARDS) is characterized by severe inflammatory pulmonary edema of unknown pathogenesis. To investigate the pathogenesis of ARDS associated with neutrophilic oxidative stress, the role of phospholipase $A_2$ ($PLA_2$) was evaluated by the inhibition of calcium channel. Methods : In Sprague-Dawley rats, acute lung injury (ALI) was induced by the instillation of E.coli endotoxin (ETX) into the trachea. At the same time, diltiazem was given 60 min prior to tracheal instillation of ETX. Parameters of ALI such as lung and neutrophil $PLA_2$, lung myeloperoxidase (MPO), BAL neutrophils, protein, surfactant were measured. Production of free radicals from neutrophils was measured also. Morphological studies with light microscope and electron microscope were carried out and electron microscopic cytochemistry for detection of free radicals was performed also. Results : Diltiazem had decreased the ALI parameters effectively in ETX given rats and decreased the production of free radicals from neutrophils and lung tissues. Morphological studies denoted the protective effects of diltiazem. Conclusion : Diltiazem, a calcium channel blocker, was effective in amelioration of ALI by the suppression of neutrophilic oxidative stress mediated by $PLA_2$ activation.

The Change of Antioxidant Enzyme (Superoxide Dismutase, Catalase, Glutathione Peroxidase) in the Endotoxin Infused Rat Lung (내독소 투여후 쥐의 폐조직내 Antioxidant (Superoxide Dismutase, Catalase, GSH-Peroxidase)의 변화에 대한 연구)

  • Song, Jeong-Sup;Kim, Chi-Hong;Kwon, Soon-Seog;Kim, Young-Kyoon;Kim, Kwan-Hyoung;Han, Ki-Don;Moon, Hwa-Sik;Park, Sung-Hak
    • Tuberculosis and Respiratory Diseases
    • /
    • v.40 no.2
    • /
    • pp.104-111
    • /
    • 1993
  • Background: Gram-negative bacterial endotoxin induced septicemia is known to be a leading cause in the development of adult respiratory distress syndrome(ARDS). The mechanism of endotoxin induced lung injury is mainly due to the activated neutrophils which injure the capillary endothelial cells by releasing oxidant radical and resulted in pulmonary edema. We studied the change of antioxidant enzyme in the case of large or small, intermittant dose of endotoxin infused rat lungs. Methods: Endotoxin was given to the rat through the peritoneal cavity in the dose of 7 mg/kg body weight in the large dose group and 1 mg/kg for 10 days in the small dose group. Bronchoalveolar lavage (BAL) was done and rats were killed at 6, 12, 24 hours after single endotoxin injection in the large dose group and 3, 7, 10 days after daily endotoxin injection for 10 days in the small dose group. The lungs were perfused with normal saline through the pulmonary artery to remove the blood and were homogenized in 5 volume of 50 mM potassium phosphate buffer containing 0.1 mM EDTA. After centrifuging at 100,000 g for 60 minute, the supernatent was removed and stored at $-70^{\circ}C$ until measuring for superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH-Px) and protein. Results: We observed the following results. 1) The lung wet/dry weight ratio and albumin concentration in the BAL fluids were increased to peak at 12 hours and neutrophil number in the BAL fluids were peak at 6 hours after endotoxin injection in the large dose group. 2) Cu, Zn SOD (IU/mg protein) was significantly decreased after 6, 12 hours after endotoxin injection in the large dose group. 3) There were no singnificant change in the level of Mn SOD, catalase, GSH-Px after endotoxin injection in both groups. Conclusion: Endotoxin in the large dose group produced the acute pulmonary edema and decreased the Cu, Zn SOD in the lung tissue after injecting endotoxin at 6 and 12 hours. These phenomenon may be due to the cell membrane damage by endotoxin. Further research would be necessary whther giving SOD by intratracheal route or method to increase the synthesis of SOD may lessen the acute lung injury by endotoxin.

  • PDF

The Preventive Effect of Allergic Inflammation by Induction of Oral Tolerance in a Mouse Model of Chronic Asthma (마우스 만성천식모델에서 경구면역관용 유도에 의한 알레르기 염증의 예방효과)

  • Kim, Jin Sook;Lee, Jung Mi;Kim, Seung Joon;Lee, Sook Young;Kwon, Soon Seog;Kim, Young Kyoon;Kim, Kwan Hyoung;Moon, Hwa Sik;Song, Jeong Sup;Park, Sung Hak
    • Tuberculosis and Respiratory Diseases
    • /
    • v.57 no.5
    • /
    • pp.425-433
    • /
    • 2004
  • Background : Induction of oral tolerance (OT) has been known to prevent allergic inflammation in acute asthma model within 4 weeks. However it is remained whether induction of OT may effectively prevent allergic inflammation in chronic asthma model over 4 weeks. We observed the effect of induction of OT on allergic inflammation and airway remodeling in chronic asthma model up to 8 weeks. Methods : 5-week-old female BALB/c mice divided into 4 groups-control group, asthma group, low dose OT group, and high dose OT group. To induce oral tolerance mice were fed ovalbumin (OVA) before sensitization with OVA and aluminum hydroxide-1 mg for 6 consecutive days in the low dose OT group and 25 mg once in the high dose OT group. Mice in the asthma group were fed phosphate buffered saline instead of OVA. After sensitization followed by repeated challenge with aerosolized 1% OVA during 6 weeks, enhanced pause (Penh), inflammatory cells, IL-13, and IFN-${\gamma}$ levels in bronchoalveolar lavage (BAL) fluids as well as OVA-specific IgE, IgG1, and IgG2a levels in serum were measured. In addition the degree of goblet cell hyperplasia and peribronchial fibrosis were observed from lung tissues by PAS and Masson's trichrome stain. Results : Both OT groups showed a significant decrease in Penh, inflammatory cells, IL-13, and IFN-${\gamma}$ levels in BAL fluids as well as OVA-specific IgE, IgG1, and IgG2a levels in serum compared with the asthma group (P<0.05). In addition, the degree of goblet cell hyperplasia and peribronchial fibrosis were significantly attenuated in both OT groups compared with the asthma group (P<0.01). Conclusion : These results suggest that induction of OT may effectively prevent allergic inflammation as well as airway remodeling even in chronic asthma model up to 8 weeks.

The Efficacy of α-lipoic Acid on the Endotoxin-induced Acute Lung Injury (α-lipoic acid 후처치가 내독소로 유발된 급성폐손상에 미치는 효과)

  • Huh, Jin Won;Hong, Sang Bum;Kim, Mi Jung;Lim, Chae-Man;Koh, Younsuck
    • Tuberculosis and Respiratory Diseases
    • /
    • v.62 no.2
    • /
    • pp.105-112
    • /
    • 2007
  • Background: Oxidative stress may play an important role in the pathogenesis of endotoxin-induced acute lung injury (ALI). This study evaluated the therapeutic effect of ${\alpha}$-lipoic acid, a nonenzymatic antioxidant, in a rat model of lipopolysaccharide (LPS) induced ALI. Materials and Methods: ALI was induced in Sprague-Dawley rats by instilling LPS (E.coli, 3mg/Kg) into the trachea. The rats were classified into the control, control+${\alpha}$-lipoic acid, LPS, and LPS+${\alpha}$-lipoic acid groups.The lung lavage neutrophil count, cytokine-induced neutrophil chemoattractant (CINC), lung myeloperoxidase (MPO), and cytokine concentrations (TNF-${\alpha}$, IL-$1{\beta}$, IL-6 and IL-10) were measured at 2 h and 6 h after LPS administration. Results: The total cell and neutrophil counts of the LPS+${\alpha}$-lipoic acid groups were significantly lower than the LPS groups. The protein concentration in the BAL fluid was similar in the LPS groups and LPS+${\alpha}$-lipoic acid groups. The TNF-${\alpha}$, IL-$1{\beta}$, and IL-6 concentrations in the BAL fluid were not decreased by the ${\alpha}$-lipoic acid treatment in the LPS treated rats. Conclusions: Although ${\alpha}$-lipoic acid decreased the level of LPS-induced neutrophil infiltration into the lung, it could not attenuate the LPS-induced ALI at the dose administered in this study.

Effects of CPG-oligodeoxynucleotides in Chronic Inflammation and Remodeling of Airway in a Murine Model of Bronchial Asthma (기관지천식의 마우스모델에서 CPG-oligodeoxynucleotides의 기도의 만성염증 및 기도재구성에 대한 영향)

  • Song, So Hyang;Kim, Chi Hong;Dong Hwa, Han;Kim, Seung Joon;Moon, Hwa Sik;Song, Jeong Sup;Park, Sung Hak
    • Tuberculosis and Respiratory Diseases
    • /
    • v.57 no.6
    • /
    • pp.543-552
    • /
    • 2004
  • Background : Airway remodeling of the asthmatic airway, the result of persistent inflammation in the bronchial wall, is associated with irreversible airway obstruction and the severity of asthma. Previous reports had represented that adminitering CpG-oligodeoxynucleotides (CpG-ODN) before sensitization or challenge by allergens inhibits the development of eosinophilic airway inflammation in a murine model of asthma, but the effects of CpG-ODNs on chronic inflammation and airway remodeling had not been characterized. To investigate the influence of CpG-ODNs on chronic inflammation and remodeling of the airway, we performed studies using a murine model of chronic allergen-induced asthma. Methods : Balb/C mice were sensitized to ovalbumin(OVA) and subsequently exposed to nebulized OVA by means of inhalation twice weekly for 7 weeks. CpG-ODNs($30{\mu}g$) was administered intraperitoneally at sensitization. After final inhalation, mice were evaluated for airway hyperresponsiveness, chronic airway inflammation and remodeling. Results : The mice exposed to chronic and recurrent airway challenge with OVA had persistent airway hyperresponsiveness, chronic inflammation and airway remodeling. Mice treated with CpG-ODNs exhibited decreased bronchial hyperresponsiveness, OVA-specific IgE, chronic inflammation and evidence of airway remodeling, including goblet cell hyperplasia and subepithelial fibrosis. Conclusion : CpG-ODNs was thought to prevent chronic inflammation and remodeling changes in a murine model of chronic asthma.

The Effect of Nebulized Frankincense Essential Oil in an OVA-Induced Allergic Asthma Mouse Model (프랑킨센스 에센셜 오일 흡입이 OVA로 유도된 알러지성 천식 모델 생쥐에 미치는 영향)

  • Lee, Hye-Youn;Kim, Kum-Ran;Kang, Sang-Mo
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.1
    • /
    • pp.93-104
    • /
    • 2010
  • In this study, we investigated the effects of frankincense essential oil (BSEO) on the immune cell change in the lung, BALF and PBMC using a mouse model of asthma. BALB/c mice after intraperitoneal OVA sensitization (day 1) were challenged intratracheally with OVA on day 14. Then, the asthma was induced by repeated OVA inhalation challenged. The asthma induced mice group inhaled 0.3% BSEO for 30 minutes per trial, three times a week, for 8 weeks using the nebulizer. After 12 weeks from the experiment, the mice was killed and the lung, bronchoalveolar lavage fluid (BALF) and peripheral blood mononuclear cell (PBMC) were obtained. Next, the change of immune cells inside the separated tissues was observed to identity the effects of BSEO on the allergic asthma mice. In conclusion, the hypersensitive reaction of airway to the bronchoconstrictor in the allergic asthma induced mice was effectively suppressed in Frankincense group, in Bermagot, Eucalyptus, Chamomile, Marjoram and Frankincense groups, the natural aromatic essential oil groups. Furthermore, it was also confirmed that the weight of lung, total number of alveolus cells and the number of BALF, MNL and DLN increased after inducing allergic asthma were reduced. BSEO suppressed the percentage of $CD3e^+/CD19^-$, $B220^+/CD23^+$ and $CD11b^+/Gr-1^+$ cells in the lung tissue of allergic asthma mice. Moreover, BSEO also reduced the percentage of $CD4^+/CD8^-$, $B220^+/CD23^+$ and $CD3^+/CCR3^+$ cells in BALF. In addition, the percentage of $CD3e^+/CD19^-$, $CD3^+/CD69^+$ and $B220^+/CD23^+$ cells in PBMC was reduced. The results of this study indicate that BSEO would be effective to treat allergic asthma by the immune control suppressing the activity of immune cells in each tissue.

Effect of the Inhibition of $PLA_2$ on the Oxidative Stress in the Lungs of Glutathione Depleted Rats Given Endotoxin Intratracheally (Glutathione이 고갈된 흰쥐에서 내독소에 의해 유도된 급성 폐손상시 $PLA_2$ 억제가 산소기 형성에 미치는 영향)

  • Cho, Hyun-Gug;Moon, Hye-Jung;Park, Won-Hark;Kim, Te-Oan;Lee, Young-Man
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.2
    • /
    • pp.246-259
    • /
    • 2000
  • Background: As one of the etiologies of acute respiratory distress syndrome(ARDS), sepsis is one of the morbid causes of this cryptogenic malady. Even though many documents on the role of endotoxin(ETX) in the pathogenesis of ARDS have been issued, still the underlying mechanism associated with oxidative stress and activation of $PLA_2$ has been controversial. In the present study, the role of phospholipase $A_2(PLA_2)$ in the neutrophilic respiratory burst, which is presumed to cause acute lung injury during sepsis, was probed. Method: In glutathione-depleted Sprague-Dawley rats, lung leak, infiltration of neutrophils, $PLA_2$ activity and lipid peroxidation in the lung were measured after intratracheal instillation of endotoxin(delete). In addition, gamma glutamyl transferase(GGT) activity and the amount of pulmonary surfactant were measured. Morphologically, the changes in ultrastructure and cytochemical demonstration of oxidants were presented to confirm the neutrophilic oxidative stress and to elucidate the effects of $PLA_2$ activation on(delete) oxidative stress. Results: Instillation of ETX to glutathione-depleted rats intensified lung leak and lipid peroxidation when compared with non-glutathione depleted rats treated with the endotoxin. Moreover, oxidative stress was confirmed by the assay of GGT and malondialdehyde. Functionally, the depletion of glutathione altered the secretion of pulmonary surfactant from alveolar type II cells. Ultrastructurally and cytochemicaliy, oxidative stress was also confirmed after treatment of with ETX and diethylmaleate(DEM). Conclusion: The endotoxin-induced acute lung injury was mediated by oxidative stress, which in turn was provoked by the neutrophilic respiratory burst. The activation of $PLA_2$ in the lung seems to playa pivotal role in the oxidative stress of the lung.

  • PDF

The Change of Alveolar-capillary Barrier by Germanium in Acute Lung Injury Induced by Lipopolysaccharide (LPS에 의한 급성 폐손상에서 게르마늄에 의한 폐포-모세혈관 장벽의 변화)

  • Lee, Yoon-Jeong;Cho, Hyun-Gug;Sin, Gun-Ho;Jeune, Kyung-Hee
    • Applied Microscopy
    • /
    • v.39 no.1
    • /
    • pp.27-40
    • /
    • 2009
  • Acute respiratory distress syndrome (ARDS), also known as an acute inflammatory lung disease is developed by various factors that is originated from the destruction of alveolar-capillary barrier, and neutrophils plays an important role in the destruction. The study intended to confirm, the anti-inflammatory effect of germanium, whether a lung injury has been mitigated with the reduction of injury in alveolar-capillary barrier resulting from inhibition of neutrophils migration in lung tissue. Test groups were divided in saline administered CON, 5 hours of endotoxin administered LPS and 5 hours of endotoxin administered Ge+LPS following 1 hours of pre-processed germanium. $100{\mu}g$ endotoxin was melted in 0.5 mL saline and sprayed into airway and 26 mg germanium per 100 g weight was administered into abdominal cavity. The endotoxin group which induced an acute lung injury with administered endotoxin showed dramatic increase of pulmonary edema (p<0.001), protein contents in bronchoalveolar lavage fluid, BALF (p<0.05) and neutrophils of infiltration in BALF (p<0.001) comparing with a control group, while a pre-treated germanium group showed significant decrease in all categories comparing to the endotoxin administerd group. In the result of a microscopic observation, the structure of alveolar-capillary barrier which is constructed with basal lamina, alveolar type I cells and endothelial cell were preserved of the pre-treated germanium group relatively well compare to the endotoxin administered group. And the construction of lamellar body, microvilli and basal lamina of alveolar type II cells were also preserved relatively well. Hence, germanium activates as an anti-Inflammatory mediator in other words, it interfered neutrophils migration into lung tissue, thereby reduced injury of alveolar-capillary barrier from toxic substances of activated neutrophils. Consequently, the study has determined that the acute lung injury induced by endotoxin has been decreased by the pre-treated germanium.

The Role of Poly(ADP-ribose) Polymerase-1 in Ventilator-Induced Lung Injury (기계환기로 인한 급성 폐손상에서 poly(ADP-ribose) polymerase-1의 역할)

  • Kim, Je-Hyeong;Yoon, Dae Wui;Hur, Gyu Young;Jung, Ki Hwan;Lee, Sung Yong;Lee, Sang Yeub;Shin, Chol;Shim, Jae Jeong;In, Kwang Ho;Yoo, Se Hwa;Kang, Kyung Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.60 no.4
    • /
    • pp.451-463
    • /
    • 2006
  • Background : Reactive oxygen species (ROS) take center stage as executers in ventilator-induced lung injury (VILI). The protein with DNA-damage scanning activity, poly (ADP-ribose) polymerase-1 (PARP1), signals DNA rupture and participates in base-excision repair. Paradoxically,overactivation of PARP1 in response to massive genotoxic injury such as ROS can induce cell death through ${\beta}$ -nicotinamide adenine dinucleotide ($NAD^+$) depletion, resulting in inflammation. The purpose of this study is to investigate the role of PARP1 and the effect of its inhibitor in VILI. Methods : Forty-eight male C57BL/6 mice were divided into sham, lung protective ventilation(LPV), VILI, and PARP1 inhibitor (PJ34)+VILI (PJ34+VILI) groups. Mechanical ventilator setting for the LPV group was $PIP\;15cmH_2O$ + $PEEP\;3cmH_2O$ + RR 90/min + 2 hours. The VILI and PJ34+VILI groups were ventilated on a setting of $PIP\;40cmH_2O$ + $PEEP\;0cmH_2O$ + RR 90/min + 2 hours. As a PARP1 inhibitor for the PJ34+VILI group, 20 mg/Kg of PJ34 was treated intraperitoneally 2 hours before mechanical ventilation. Wet-to-dry weight ratio and acute lung injury (ALI) score were measured to determine the degree of VILI. PARP1 activity was evaluated by using an immunohistochemical method utilizing biotinylated NAD. Myeloperoxidase (MPO) activity and the concentration of inflammatory cytokines such as tumor necrosis factor $(TNF)-{\alpha}$, interleukin $(IL)-1{\beta}$, and IL-6 were measured in bronchoalveolar lavage fluid (BALF). Results : In the PJ34+VILI group, PJ34 pretreatment significantly reduced the degree of lung injury, compared with the VILI group (p<0.05). The number of cells expressing PARP1 activity was significantly increased in the VILI group, but significantly decreased in the PJ34+VILI group (p=0.001). In BALF, MPO activity, $TNF-{\alpha}$, $IL-1{\beta}$, and IL-6 were also significantly lower in the PJ34+VILI group (all, p<0.05). Conclusion : PARP1 overactivation plays a major role in the mechanism of VILI. PARP1 inhibitor prevents VILI, and decreases MPO activity and inflammatory cytokines.