• Title/Summary/Keyword: 보-기둥구조

Search Result 546, Processing Time 0.027 seconds

Failure mode prediction for steel cable-stayed bridges using modified inelastic eigenvalue analysis (수정된 비탄성 고유치해석을 이용한 강사장교의 파괴모드 예측)

  • Yoo, Hoon;Na, Ho-Sung;Choi, Dong-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.587-588
    • /
    • 2011
  • 본 논문에서는 강사장교의 극한강도 및 파괴모드를 간략하게 예측할 수 있는 간단하고 빠른 해석법을 제안하였다. 기존의 비탄성 고유치해석의 기본 개념을 바탕으로 기둥 요소에 대한 수렴 기준을 보였고, 사장교 구조 시스템의 거더 및 주탑 요소에서 보-기둥 거동을 고려하기 위한 새로운 수렴 기준을 제시하였다. 제시된 방법의 타당성 검증을 위하여 중앙경간 길이와 거더의 높이를 변화시킨 강사장교 모델에 대하여 제안된 비탄성 고유치 해석과 비선형 탄소성 해석 결과를 비교하였다. 해석 결과, 제안된 수렴 기준을 적용한 비탄성 고유치 해석은 기존에 기둥의 수렴기준을 적용했던 방법에 비하여 강사장교의 극한강도를 보다 정확히 예측할 수 있었다. 또한, 제안된 방법은 강사장교의 파괴모드 역시 근사하게 모사 가능함을 알 수 있었다.

  • PDF

The Structural Economical Efficiency Evaluation of Partially Restrained Composite CFT Column-to-Beam Connection (합성반강접 CFT기둥-보 접합부 구조의 경제성 평가)

  • Kim, Sun-Hee;Bang, Jung-Seok;Park, Young-Wook;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.109-117
    • /
    • 2012
  • This study seeks to devise a design application for a beam structure with partially restrained composite connection to a CFT column. A cost-efficient and stable component is applied by adjusting the stiffness ratio of the column connection through partially restrained composite connection. Based on a review of the structure's stability, it was confirmed that in the case of a low-rise building as a moment frame, resistance without bracing is feasible because stiffness increased by virtue of the partial restrained composite connection by composite action. In the case of a high-rise building, lateral resistance load of moment frame was approximately 10% when proper partial restrained rate was at around 60%. With considerations related to economic efficiency, the partial restriction effect of the beam component was significantly activated by the uniform load, but that of the beam activated by concentrated load was not significantly indicative. The analysis indicated that 60% partial restrained girder at the connection was the most economical in the case of uniform load. It also showed that end moments can be reduced by approximately 25%.

Capacity Evaluation of Joint Reinforcement with Debonding Area at the Interface Steel to Concrete Surface (접합부 철근의 비부착에 따른 성능평가)

  • Jung, Woo-Young;Ha, Keum-Hee
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.67-70
    • /
    • 2011
  • 해안에 위치한 철근콘크리트 구조물 및 사회 간접 시설물들은 염해피해에 대한 우려가 있다. 염해피해로 인한 철근의 부식현상이 발생하면 철근과 콘크리트 부착성능의 저하로 인한 부재의 내력감소를 가져 올 수 있다. 따라서 본 연구에서는 염해부식이 진행되어 콘크리트와 철근간의 부착 및 비부착 여부에 따른 성능을 확인하기 위하여 완전 비부착된 보-기둥 접합부를 철근부착용 고무튜브를 이용하여 제작하였다. 제작된 실험체로 준정적 반복횡하중을 이용한 실험을 통해 성능평가를 수행하였다. 비부착된 보-기둥 접합부의 비선형 해석을 하기 위해 4절점 래티스 모델로 개선하여 적용하였다.

  • PDF

Seismic Performance of Beam-Column Connections for Special Moment Frame Using 600 MPa Flexural Reinforcement (600 MPa 휨 철근을 사용한 특수 모멘트 골조의 보-기둥 접합부의 내진성능)

  • Hwang, Hyeon-Jong;Park, Hong-Gun;Choi, Won-Seok;Chung, Lan;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.591-601
    • /
    • 2011
  • An experimental study was performed to evaluate the seismic performance of beam-column connections using 600 MPa re-bars for beam flexural reinforcement. Three full scale specimens of interior beam-column connection and two specimens of exterior beam-column connection were tested under cyclic loading. The specimens were designed to satisfy the requirements of Special Moment Frame according to current design code. The structural performance of the specimens with 600 MPa re-bar were compared with that of the specimen with 400 MPa re-bars. The test results showed that bond-slip increased in the beam-column joint. However, the load-carrying capacity, deformation capacity, and energy dissipation capacity of the specimens with 600 MPa re-bar were comparable to those of the specimens with 400 MPa re-bars.

Analytical Study on Structural Behaviors of Post-Tensioned Column-Base Connections for Steel Modular Structures (철골 모듈러 구조물의 포스트텐션 기둥-바닥 접합부 거동에 대한 해석적 연구)

  • Choi, Kyung-Suk;Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.427-435
    • /
    • 2020
  • Modular structures are relatively lightweight compared to reinforced-concrete or steel structures. However, it is difficult to achieve structural integrity between the columns of unit modules in a modular structure, which causes undesirable effects on the lateral force resistance capacity against wind and earthquake loads. This is more prominent in modular structures whose overall heights are greater. Hence, a post-tensioned modular structural system is proposed herein to improve the lateral force resistance capacity of a typical modular structure. A post-tensioned column-base connection, which is the main component of the proposed modular structural system, is configured with shapes and characteristics that allow inducing self-centering behaviors. Finite element analysis was then performed to investigate the hysteretic behaviors of the post-tensioned column-base connection. The analysis results show that the hysteretic behaviors are significantly affected by the initial tension forces and beam-column connection details at the base.

Dynamic Behavior of 2D 8-Story Unbraced Steel Frame with Partially Restrained Composite Connection (합성반강접 접합부를 갖는 2차원 8층 비가새 철골골조의 동적거동)

  • Kang, Suk Bong;Lee, Kyung Taek
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.503-513
    • /
    • 2007
  • The seismic responses of a building are affected by the connection characteristics that have effects on structural stiffness. In this study, push-over analysis and time history analysis were performed to estimate structural behavior of 2D eight-story unbraced steel structures with partially restrained composite connections using a nonlinear dynamic analysis program. Nonlinear $M-{\theta}$characteristics of connection and material inelastic characteristics of composite beam and steel column were considered. The idealization of composite semi-rigid connection as fully rigid connection yielded an increase in initial stiffness and ultimate strength in the push-over analysis. In time history analysis, the stiffness and hysteretic behavior of connections have effects on base-shear force, maximum story-drift and maximum moment in beams and columns. For seismic waves with PGA of 0.4 g, the structure with the semi-rigid composite connections shows the maximum story-drift with less than the life safety criteria by FEMA 273 and no inelastic behavior of beam and column, whereas in the structure with rigid connections, beams and columns have experienced inelastic behaviors.

Inelastic Time History Analysis of a 5-Story RC OMRF Considering Inelastic Shear Behavior of Beam-Column Joint (보-기둥 접합부 비탄성 전단거동을 고려한 5층 철근콘크리트 보통모멘트골조의 비탄성 시간이력해석)

  • Kang, Suk-Bong;Kim, Tae-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.633-641
    • /
    • 2012
  • In this study, the effects of the inelastic shear behavior of beam-column joint on the response of RC OMRF are evaluated in the inelastic time history analysis. For an example, a 5-story structure for site class SB and seismic design category C was designed in accordance with KBC2009. Bending moment-curvature relationship for beam and column was evaluated using fiber model and bending moment-rotation relationship for beam-column joint was calculated using simple and unified joint shear behavior model and moment equilibrium relationship. The hysteretic behavior was simulated using three-parameter model suggested in IDARC program. The inelastic time history analysis with PGA for return period of 2400 years showed that the model with inelastic beam-column joint yielded smaller maximum base shear force but nearly equivalent maximum roof displacement and maximum story drift as those obtained from analysis using rigid joint. The maximum story drift satisfied the criteria of KBC2009. Therefore, the inelastic shear behavior of beam-column joint could be neglected in the structural design.

Derivation of Exact Dynamic Stiffness Matrix of a Beam-Column Element on Elastic Foundation (균일하게 탄성지지된 보-기둥요소의 엄밀한 동적강성행렬 유도)

  • 김문영;윤희택;곽태영
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.463-469
    • /
    • 2002
  • The governing equation and force-displacement rotations of a beam-column element on elastic foundation we derived based on variational approach of total potential energy. An exact static and dynamic 4×4 element stiffness matrix of the beam-column element is established via a generalized lineal-eigenvalue problem by introducing 4 displacement parameters and a system of linear algebraic equations with complex matrices. The structure stiffness matrix is established by the conventional direct stiffness method. In addition the F. E. procedure is presented by using Hermitian polynomials as shape function and evaluating the corresponding elastic and geometric stiffness and the mass matrix. In order to verify the efficiency and accuracy of the beam-column element using exact dynamic stiffness matrix, buckling loads and natural frequencies are calculated for the continuous beam structures and the results are compared with F E. solutions.

Seismic Performance of Precast Beam-Column Joints with Thru-Connectors (관통형 연결재로 연결된 PC 보-기둥 맞댐 접합의 내진성능에 관한 실험적 연구)

  • Park, Soon-Kyu;Kim, Min-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.441-450
    • /
    • 2010
  • This is a preliminary study on the development of precast beam-column joints for dry construction methodology. Precast beam column joints with thru-connectors (BCJ_TC) using high strength bars or PS strands were developed and their seismic performance including strength degradation, stiffness degradation and energy dissipation capacity was experimentally evaluated. Test results showed that compressive failures at the end blocks of PC beam members occurred dominantly while PC columns including panel zones were free from any damage. However, the connections confined with CFRP at the end block showed much improved seismic performance than that of the unconfined connections. Connections with neoprene pad fillers between beam and column interfaces were better than the other connections in all the seismic performances except initial stiffness. To improve the seismic performances of BCJ_TC, compressive strength of the concrete at the end block need to be increased to compensate for the additional compressive stresses due to unbonded connectors and deformation of connectors should be controlled respectively.

Structural Capacity Evaluation of Hybrid Precast Concrete Beam-Column Connections Subjected to Cyclic Loading (반복하중을 받는 하이브리드 프리캐스트 보-기둥 접합부의 성능평가)

  • Choi, Hyun-Ki;Yoo, Chang-Hee;Choi, Yun-Cheul;Choi, Chang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.325-333
    • /
    • 2010
  • In this study, new moment-resisting precast concrete beam-column joint made up of hybrid steel concrete was developed and tested. This beam-column joint is proposed for use in moderate seismic regions. It has square hollow tubular section in concrete column and connecting plate in precast U-beam. The steel elements in column and beam members were connected using bolt. Furthermore, in order to prevent the premature failure of concrete in hybrid steel-concrete connection, ECC(engineered cementitious composite) was used. An experimental study was carried out investigating the joint behavior subjected to reversed cyclic loading and constant axial compressive load. Two precast beam-column joint specimens and monolithic reinforced concrete joint specimen were tested. The variables for interior joints were cast-in-situ concrete area and transverse reinforcement within the joint. Tests were carried out under displacement controlled reverse cyclic load with a constant axial load. Joint performance is evaluated on the basis of connection strength, stiffness, energy dissipation, and displacement capacity. The test results showed that significant differences in structural behavior between the two types of connection because of different bonding characteristics between steel and concrete; steel and ECC. The proposed joint detail can induce to move the plastic hinge out of the ECC and steel plate. And proposed precast connection showed better performance than the monolithic connection by providing sufficient moment-resisting behavior suitable for applications in moderate seismic regions.