• Title/Summary/Keyword: 보행형 로봇

Search Result 119, Processing Time 0.027 seconds

Landing Performance of a Quadruped Robot Foot Having Parallel Linked Toes on Uneven Surface (평행링크형 발가락을 갖는 4족 보행로봇 발의 비평탄 지면 착지 성능)

  • Hong, Yeh-Sun;Yoon, Seung-Hyeon;Kim, Min-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.10
    • /
    • pp.47-55
    • /
    • 2009
  • In this study, a robot foot having toes for firm stepping on uneven surface is proposed. The toes are connected to the lower leg by parallel links so that the lower leg can rotate in the rolling and pitching directions during stance phase without ankle joint. The landing performance of the foot on uneven surface was evaluated by relative comparison with that of the most common foot making point contact with the walking surface, since the test conditions considering real uneven surface could be hardly defined for its objective evaluation. Anti-slip margin(ASM) was defined in this study to express the slip resistance of a robot foot when it lands on a projection with half circular-, triangular- or rectangular cross section, assuming that uneven surface consists of projections having these kind of cross sections in different sizes. Based on the ASM analysis, the slip conditions for the two feet were experimentally confirmed. The results showed that the slip resistance of the new foot is not only higher than that of the conventional point contact type foot but also less sensitive to the surface friction coefficient.

Development of a Walking-type Solar Panel Cleaning Robot Capable of Driving on Inclined Solar Panel (경사진 패널 위에서 주행이 가능한 보행형 태양광 패널 청소로봇 시스템 개발)

  • Park, Sunggwan;Jang, Woojin;Kim, Dong-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.5
    • /
    • pp.79-88
    • /
    • 2020
  • This paper propose the method to drive a solar panel cleaning robot efficiently on an inclined panel using vacuum pad pressure. In this method, the rubber pads using the vacuum pressure are used to attach robot body to the panel surface. By applying the linkage mechanism to the vacuum pads, it was possible to reduce robot weight and power consumption and to prevent slipping of the robot. In addition, the use of solenoid valves, proximity sensors, and encoders to detect movement of the robot body and the control of the pad pressure dedicate to the driving of the robot on an inclined panel. In order to move the robot forward, the operation sequence of multiple solenoid valves was completed, and the six vacuum pads mounted to both legs were accurately controlled to form vacuum and atmospheric pressure in right order so that the robot could move forward without slipping. At last, it was confirmed through experiments that straight-forward moving and rotational movement could be performed up to 36 degrees of inclination angle of solar panel.

Gait Pattern Generation for Lower Extremity Exoskeleton Robot and Verification of Energy Efficiency (하지 착용형 외골격 로봇의 효율적 보행패턴 생성 및 에너지 효율성 검증)

  • Kim, Wan-Soo;Lee, Seung-Hoon;Ryu, Jae-Kwan;Baek, Joo-Hyun;Kim, Dong-Whan;Han, Jung-Soo;Han, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.3
    • /
    • pp.346-353
    • /
    • 2012
  • The purpose of this study is to verify the energy efficiency of the integrated system combining human and a lower extremity exoskeleton robot when it is applied to the proposed gait pattern. Energy efficient gait pattern of the lower limb was proposed through leg function distribution during stance phase and the dynamic-manipulability ellipsoid (DME). To verify the feasibility and effect of the redefined gait trajectory, simulations and experiments were conducted under the conditions of walking on level ground and ascending and descending from a staircase. Experiments to calculate the metabolic cost of the human body with or without the assistance of the exoskeleton were conducted. The energy consumption of the lower extremity exoskeleton was assessed, with the aim of improving the efficiency of the integrated system.

Kinematic Modelling of the Trot of a Lizard Based on the Motion Capture (모션 캡쳐에 기반한 도마뱀 속보에 대한 기구학적 모델링)

  • Kim, Chang Hoi;Shin, Ho Cheol;Lee, Heung Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.264-273
    • /
    • 2013
  • The importance of the robots has emerged as the means of minimizing the casualties in the future war, and, thus, the biomimetic robots mimicking the optimized organisms has been actively studied. The robot inspired lizard is suitable for reconnaissance and the surveillance in narrow areas. In this paper, we analyzed the locomotion of a lizard by motion capture system using the infrared markers. We attached 21 markers to the joints of the lizard. By considering the measured data, we analyzed the walking motion of the lizard which trots in a sprawled posture. Moreover, we proposed the 25 dof kinematic model which was able to reproduce the gait of the lizard faithfully. The model was verified by simulations.

Development of Child-Sized Humanoid Robot (아동 크기 휴머노이드 로봇의 개발)

  • Lee, Ki-Nam;Park, Jang-Hyun;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.1
    • /
    • pp.24-28
    • /
    • 2013
  • In this paper, a procedure of design and development of a child-sized humanoid robot is described. The design concept for a humanoid robot was proposed and the mechanism of the humanoid robot which is more than 1 meter tall was designed by using 3D design tools. By considering the lightweight of the robot, the hardware for the robot was designed for optimal performance. The frames and links of the robot designed by 3D design tools was manufactured through precision machining with the material which is light and have a good strength. The manufactured child-sized humanoid robot was experimented with basic motions applied inverse kinematics and balance control, and the performance of the motions were verified.

A Study on Task Planning and Design of Modular Quadruped Robot with Docking Capability (결합 가능한 모듈형 4족 로봇의 설계 및 작업 계획에 대한 연구)

  • Sun, Eun-Hey;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.3
    • /
    • pp.169-175
    • /
    • 2016
  • There are many researches to develop robots that improve its mobility and task planning to adapt in various uneven environments. In this paper, we propose the design method and task planning of quadruped robot which can have top-bottom docking structure. The proposed quadruped robot is designed to adjust leg length using linear actuators and perform top-bottom docking and undocking using octagonal cone shaped docking module. Also, to stable walking and information gathering in the various environments, a geomagnetic sensor, PSD sensor, LRF sensor and camera. We propose an obstacle avoidance method and the topbottom docking algorithm of the two quadruped robots using linear actuator. The robot can overcome obstacles using adjusting leg length and activate the top-bottom docking function. The top-bottom docking robots of two quadruped robot can walk 4 legged walking and 6 legged walking, and use 4 arms or 2 arms the upper. We verified that the docking robots can carry objects using 4 leg of the upper robot.

Development of quadruped walking robot with insectile leg (곤충형 다리구조의 4족 보행로봇의 개발)

  • Ahn, Y.M.;Choi, G.H.;Kim, T.H.;Kim, Y.T.
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.301-306
    • /
    • 2001
  • In this paper, we developed a quadruped walking robot, FRAMIX-T, with insectile leg mechanism and we inspected the efficiency of it in detail. In robotics, the legs of insect type are appropriate for the stability and the agile movement. So we first performed a gait analysis using duty factor, stride, phase etc., and analyzed the stability margin to improve the stability of robot. On the basis of this research, we planned the wave gait suitable for FRAMIX-T and performed a walking experiment. From this result, we proved the high efficiency using insectile leg mechanism and the possibility of walking with improved stability and mobility.

  • PDF

A development of quadruped walking robot with 3-D orthogonal legs using pantograph mechanism (팬터그라프 기구를 이용한 3차원 수직 직교형 다리 기구를 가진 4각 보행로봇의 개발)

  • 김인준;정경민
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1593-1596
    • /
    • 1997
  • Because the leg mechanism of walking roblt affect on the mobility and energy efficiency, we focus on the design of new leg mechanism based on the previous leg mechanisms. We mention the deficiency of the previous leg mechanisms and propose a new leg mechanism that consists of a 2-d.o.f pantograph mechanism and a vertical linear actuator. The pantograph mechanism is attached to the horizontal plane of the body and the verical linear actuator is vertical to that plane. In order to design a quadruped walking robot, we consider the kinematics of the 2-d.o.f pantograph mechanism and the arrangement of twol linear motion guides that drive the pantograph mechanism.

  • PDF

Bio-mimetic Quadruped Walking Robot with Autonomous Eating Function (자율섭취기능을 갖는 생체 모방형 4족 보행로봇)

  • Park Se-Hoon;Kim Kyung-Ho;Jung Kil-Woong;Kim Goan-Hun;Lee Yun-Jung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.4
    • /
    • pp.320-327
    • /
    • 2006
  • This paper introduces a new entertainment robot called ELIRO-II(Eating Lizard RObot version 2)which is a bio-mimetic quadruped walking robot with autonomous eating function. We focus on the realization of the behavior of an animal, i.e., wandering around to find food and eating food. The ELIRO-II is modeled after a lizard, which has four legs, 2-DOF waist-joint, an eye part, a mouth part and a stomach part. The effectiveness of the developed robot is shown through real experiments.

Gait Assist Method by Wearable Robot for Incomplete Paraplegic Patients (하지 부분마비 장애인을 위한 착용형 로봇의 보행 보조 방법)

  • Woo, Hanseung;Lee, Jangmok;Kong, Kyoungchul
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.2
    • /
    • pp.144-151
    • /
    • 2017
  • An important characteristic of people with partially impaired walking ability, such as incomplete paraplegics, is that they are able to generate voluntary motion of lower-limbs. Therefore, wearable robots for the incomplete paraplegic patients require a different assistance method compared to those of complete paraplegics. First, the wearable robot should be controlled to not resist wearer's motion. Second, it should be able to generate assistive torque accurately when needed. In this paper, a wearable robot, called EROWA, for the incomplete paraplegic patients is introduced. EROWA utilizes compact rotary series elastic actuators (cRSEAs) and a control method called the zero impedance control to reduce the mechanical resistance. An assistive torque trajectory is proposed to assist gait in this paper. The proposed method is verified by simulation and experimental studies.