• Title/Summary/Keyword: 보행형 로봇

Search Result 119, Processing Time 0.037 seconds

Apartment-type Self-Driving Courier Delivery Robot (아파트형 자율주행 택배 배송 로봇의 개발)

  • Park, Myeong-Chul;Kim, Kang-Hyun;Jeon, Hyo-Seop
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.301-302
    • /
    • 2022
  • 최근 지상 통로에 차량 통행 공간과 보행자 통행 공간이 분리되어있지 않은 공원형 아파트가 증가하고 있다. 이로 인해 택배 차량의 아파트 단지 안으로 진입을 통제하는 아파트가 늘어나고 있다. 현재는 이러한 상황에서 택배기사들이 직접 손수레를 끌고 아파트 안으로 들어가거나, 수령인이 직접 아파트 입구에서 택배를 수령하는 방법으로 문제를 해결 해 왔다. 본 논문은 이러한 불편함을 개선하기 위해 아파트 입구에서 집 앞까지 인공지능 기술과 카메라, 라이다센서를 이용하여 자율주행으로 택배를 운반 해줄 수 있는 '자율주행 택배 운반 로봇' 기술을 제안한다. 기존의 사람이 직접 택배를 집 앞까지 운반하는 방식이 아닌 자율주행 로봇을 이용한 방식으로 택배기사들의 과로로 인한 사고를 예방하고, 아파트 입주민들의 불편도 줄어들 것이다.

  • PDF

A study on the Stereo-Vision based Egomotion compensation for humanoid Robot (휴머노이드 로봇을 위한 스테레오 비전기반 자체 움직임 보정연구)

  • Kang, Tae-Koo;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1827-1828
    • /
    • 2008
  • 지능형 휴머노이드 로봇에서 환경에 따른 행동결정능력은 로봇이 필수적으로 갖추어야 할 기능이다. 특히 비전기반의 환경인식 기술은 로봇에서 가장 많은 보행 환경 정보를 제공한다. 따라서 보다 정확한 환경인식 성능을 위해서는 상체의 움직임이 많은 휴머노이드 로봇에서 비전기반의 높은 환경에 대한 인식 기능을 위해 전처리 단계로 로봇 자체의 움직임을 상쇄 시켜주는 기능이 필수적이다. 본 논문에서는 Gaussian 모델과 Wavelet Transform을 사용하여 추적하고자 하는 영역을 추출하고 PCA를 이용하여 로봇 자체의 움직임을 상쇄시키는 방법을 제안한다. 본 방법은 영상 전체를 분석함으로써 기존의 픽셀 단위로 움직임을 분석하는 방법에 비하여 간단하면서도 우수한 성능을 보인다. 본 시스템을 제작한 로봇에 적용한 결과 보다 높은 인식 성능을 얻을 수 있었다.

  • PDF

Development of Human-Sized Biped Robot (인체형 이족 보행로봇의 개발)

  • 최형식;박용헌;이호식;김영식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.15-18
    • /
    • 2000
  • We developed a human-sized BWR(biped walking robot) driven by a new actuator based on the ball screw which has high strength and high gear ratio. The robot overcomes the limit of the driving torque of conventional BWRs. Each leg of the robot is composed of three pitch joints and one roll joint. In all, a 10 degree-of-freedom robot with two balancing joints was developed. The BWR was developed to walk autonomously such that it is actuated by small torque motors and is boarded with DC battery and controllers. In the performance test, the BWR performed nice motions of sitting-up and sitting-down. Through the test, we could find capability of high performance in biped-walking.

  • PDF

Development of Autonomous Biped Walking Robot (자립형 이족 보행 로봇의 개발)

  • Kim, Y.S.;Oh, J.M.;Baik, C.Y.;Woo, J.J.;Choi, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.805-809
    • /
    • 2003
  • We developed a human-sized BWR(biped walking robot) named KUBIR1 driven by a new actuator based on the ball screw which has high strength and high gear ratio. KUBIR1 was developed to walk autonomously such that it is actuated by small torque motors and is boarded with DC battery and controllers. To utilize the information on the human walking motion and to analyze the walking mode of robot, a motion capture system was developed. The system is composed of the mechanical and electronic devices to obtain the joint angle data. By using the obtained data, a 3-D graphic interface was developed based on the OpenGL tool. Through the graphic interface, the control input of KUBIR1 is performed.

  • PDF

Locomotions of a Biped Robot: Static vs. Dynamic Gaits (이족 로봇의 위치 이동: 정보행 대 동보행)

  • Lim Seung-Chul;Ko In-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6 s.249
    • /
    • pp.643-652
    • /
    • 2006
  • This paper is concerned with computer simulations of a biped robot walking in static and dynamic gaits. To this end, a three-dimensional robot is considered possessing a torso and two identical legs of a typical design. For such limbs, a set of inverse kinematic solutions is analytically derived between the torso and the feet. Specific walking patterns are off-line generated meeting stability based on the VPCG or ZMP condition. Subsequently, to verify whether the robot can walk as planned in the presence of mass and ground effects, a multi-body dynamics CAE code has been applied to the resulting joint motions determined by inverse kinematics. As a result, the key parameters to successful gaits could be identified including inherent characteristics as well. Upon comparisons between the two types of gaits, dynamic gaits are concluded more desirable for larger humaniods.

Intelligent Navigation of a Mobile Robot based on Intention Inference of Obstacles (장애물의 의도 추론에 기초한 이동 로봇의 지능적 주행)

  • Kim, Seong-Hun;Byeon, Jeung-Nam
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.2
    • /
    • pp.21-34
    • /
    • 2002
  • Different from ordinary mobile robots used in a well-structured industrial workspace, a guide mobile robot for the visually impaired should be designed in consideration of a moving obstacle, which mostly refers to pedestrians in intentional motions. Thus, the navigation of the guide robot can be facilitated if the intention of each detected obstacle can be known in advance. In this paper, we propose an inference method to understand an intention of a detected obstacle. In order to represent the environment with ultrasonic sensors, the fuzzy grid-type map is first constructed. Then, we detect the obstacle and infer the intention for collision avoidance with the CLA(Centroid of Largest Area) point of the fuzzy grid-type map. To verify the proposed method, some experiments are performed.

Study on the Small Sized Robots Actuator using Piezoelectric Ceramic Bender (압전세라믹 벤더를 이용한 소형로봇용 구동원에 관한 연구)

  • Park, Jong-Man;Song, Chi-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.337-343
    • /
    • 2020
  • This study proposed piezoelectric ceramic bender actuators for application to small walking robots. As the space where human access has recently become increasingly restricted (e.g., highly concentrated radioactive storage areas, viral contaminated areas, terrorist zones, etc.), the scope of using robots is becoming more diverse, and many actions that were possible only in the past have been attempted to be replaced by small robots. This robotic concept has the advantage of being simple in structure, making it compact and producing a large size work force. The dynamic modeling, using finite element analysis, maximized the robot's mobility performance by optimizing the shape of the actuator, and the results were verified through fabrication and experimentation. The actuator moved at a maximum speed of 236 mm/s under no load conditions, and it could move at a speed of 156 mm/s under load conditions of 5g. The proposed actuator has the advantage of modular additions depending on the mission and required performance, which ensured that they are competitive against similar drive sources previously created.

Development of Insole Sensor System and Gait Phase Detection Algorithm for Lower Extremity Exoskeleton (하지 외골격 로봇을 위한 인솔 센서시스템 및 보행 판단 알고리즘 개발)

  • Lim, Dong Hwan;Kim, Wan Soo;Ali, Mian Ashfaq;Han, Chang Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.12
    • /
    • pp.1065-1072
    • /
    • 2015
  • This paper is about the development of an insole sensor system that can determine the model of an exoskeleton robot for lower limb that is a multi-degree of freedom system. First, the study analyzed the kinematic model of an exoskeleton robot for the lower limb that changes according to the gait phase detection of a human. Based on the ground reaction force (GRF), which is generated when walking, to proceed with insole sensor development, the sensing type, location, and the number of sensors were selected. The center of pressure (COP) of the human foot was understood first, prior to the development of algorithm. Using the COP, an algorithm was developed that is capable of detecting the gait phase with small number of sensors. An experiment at 3 km/h speed was conducted on the developed sensor system to evaluate the developed insole sensor system and the gait phase detection algorithm.