• Title/Summary/Keyword: 보행자 지체시간

Search Result 28, Processing Time 0.025 seconds

An Analysis Procedure for Evaluating Pedestrian Scramble Construction (대각선 횡단보도 설치 타당성 검토를 위한 효과분석 과정 수립)

  • Han, Yeo-Hui;Kim, Yeong-Chan;Yang, Chung-Heon
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.4
    • /
    • pp.73-83
    • /
    • 2011
  • Installation of pedestrian scramble is recently increasing due to pedestrian-oriented transportation policies issued in local governments. Pedestrian scramble is able to emphasize safety issues by reducing conflicts between pedestrians and vehicles when an exclusive pedestrian phase is employed. In spite of its positive property, pedestrian scramble has several negative points: an increase of a cycle length, a decrease of green time ratio, and an increase of total delay. This study delivers the impacts of pedestrian scrambles in terms of pedestrian convenience and traffic mobility. Authors analyzed the changes of traffic delays by comparing the installation and no installation of pedestrian scramble at an intersection by varying several variables: signal timings, traffic volumes, the number of lanes, and the number of pedestrian conflicts. The paper presents an analysis procedure as a guideline that assists practitioners in selection of appropriate intersections at where pedestrian scrambles are implemented.

Models for Determining the Vehicle and Pedestrian Volumes for the installation of Pedestrian Pushbuttons (보행자 작동신호기 설치기준 정립을 위한 적정 차량 및 보행자 교통량 추정모형)

  • YOON, Seung Sup;YANG, Jae Ho;KIM, Nam Seok
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.5
    • /
    • pp.488-496
    • /
    • 2015
  • The main reason to install pedestrian pushbuttons is improving traffic operations. The current guideline for the installation of signal systems with pedestrian pushbuttons is car-oriented. It is difficult to clearly understand the guideline because there isn't an in-depth study to compare the pros and cons of the pedestrian- and vehicle-oriented methods in terms of waiting time. Thus, this study aims to estimate the waiting times of pedestrians and vehicles. The two delay times are compared considering the hypothetical circumstances such as geometry, pedestrian crossing time, pedestrian/vehicle counts and arrival distribution. The results show that when the pedestrian traffic volume exceeds 97 ped/h in the case of a two-lane road (one lane in each direction) the pushbutton system is effective and beneficial to pedestrians. It means that the total waiting time of pedestrians is less than the one of vehicles. Additional four scenarios are designed and tested by varying the number of lanes and design speeds. In conclusion, the pushbutton signal is more beneficial for pedestrians when the number of pedestrians is less than or equal to 85, 70, and 70 ped/h for the three-lane scenario, the four-lane with the design speed of 80km/h scenario, and the four-lane with the design speed of 100km/h, respectively.

Development of Pedestrian Delay Model at Signalized Intersections (신호교차로 보행자 지체모형 개발)

  • Chang, Hyun-ho;Yoon, Byoung-jo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.283-294
    • /
    • 2018
  • An accurate pedestrian-delay model is essential for the pedestrian-oriented evaluation of signalized intersection (SI). The crossing behaviors of pedestrians at signalized pedestrian crosswalks (SPCs) are various, and their arrival behaviors consist of two types, random and platoon. It is natural, hence, that the behaviors of pedestrian crossing and arrival should be considered in order to estimate accurate pedestrian delay. Despite this necessity, a simple pedestrian-delay model that cannot explain these behaviors of pedestrian movements is still recommended in Highway Capacity Manual (HCM). For these reasons, a pedestrian-delay model, suitable for various SPCs and SIs, is required to make pedestrian-oriented decisions on the design and operation of various SPCs and SIs. This paper proposes a novel pedestrian-delay model that is based on the behaviors of pedestrian crossing and arrival. The proposed model consists of two sub models: the one for SPC and the other for SI. The SPC delay model was developed based on the behaviors of pedestrian crossing during pedestrian green time. The SI delay model was designed based on the behaviors of pedestrian crossing and platoon arrival. The results of a numerical simulation showed that the proposed delay model can successfully overcome the under- and overestimation problems of the HCM model with explaining various behaviors of pedestrian crossing and arrival.

The Effect of Staggered Pedestrian Crossings at Wide Width Intersections (광폭교차로에서 2단 횡단보도 설치 효과분석)

  • Kim, Dong-Nyong;Hong, Yoo-Min
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.5
    • /
    • pp.23-35
    • /
    • 2011
  • The pedestrian green time is usually long at wide width intersections. This sometimes causes the increase of delay on the whole intersection because of long cycle length and thus small g/C ratio on some direction. In this paper, to improve these problems, staggered pedestrian crossing was evaluated on the vehicular and pedestrian aspects. The results were gained by using both TRANSYT-7F and VISSIM model. The vehicle control delay of the staggered pedestrian crossing was estimated to be decreasing than that of the general pedestrian crossing by 14.9% to 85.6%. The pedestrian average delay of two pedestrian crossing systems was examined by analytical method and VISSIM. According to the analytical method there was no significant difference between each pedestrian crossing system. The pedestrian delay of staggered pedestrian crossing was from 13.4% to 22.3% than the general pedestrian crossing by VISSIM. In conclusion, the staggered pedestrian crossing was more effective than general pedestrian crossing for both the vehicle and the pedestrian. However this conclusion was resulted from micro simulation where traffic volume condition, v/c, was from 0.8 to 1.1.

An Analysis of the Effects of Walking Guidance System in Subway Stations using Genetic Algorithm (유전 알고리즘을 이용한 지하철 역사 동선 분리 시스템의 효과 분석)

  • Kim, Jin-Ho;Lee, Joo-Yong;Kim, Tae-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.617-624
    • /
    • 2015
  • The conflict of opposing pedestrian traffic-flow in a subway station(made up of stair, passageway, and escalator) diminishes the convenience and mobility of its users. In addition, the station's efficiency would be negatively affected by the growth of delay and queue length in pedestrian facilities. As these phenomena have been resulted by the overlapping in pedestrian's traffic-line, the separation of it would alleviate these problems. For the criteria and methodology of separation, this paper has investigated the bi-directional queue length and delay on the entrance of each facility (stair, passageway and escalator). Since the pedestrian flow exists bidirectionally, we have used the weighted average by inflow rate for the delay value. For the optimization of the separation, the Genetic Algorithm has been utilized in order to minimize the delay.

An Analysis of the Vehicular Delay Caused by Scrambled Crosswalk Installation in a Roundabout (회전교차로에서 대각선횡단보도 설치에 따른 차량의 지체도 분석)

  • Kang, Sung In;Lee, Young Woo
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.3
    • /
    • pp.218-226
    • /
    • 2014
  • This study examines a way to install a crosswalk that can improve pedestrians' convenience and safety and that goes beyond the crosswalk design standard of existing roundabouts. When a scrambled crosswalk, one of the crosswalk installation methods, is introduced to the roundabout system, it shortens the cross-walking distance of pedestrians and thus enhances convenience. Although the installation of a scrambled crosswalk may enhance pedestrians' convenience, it may obstruct vehicular traffic. Thus, this study presents standards for reasonable diagonal crosswalk installation based on the investigation on its effects on a vehicle's delay time. This study includes an analysis of the various geometric structures of roundabouts. The study results show that as v/c and the number of pedestrians increased, the delay time after the installation of a scrambled crosswalk increased although the extent was different. In general, the effect of the installation of a scrambled crosswalk was insignificant regardless of the number of pedestrians when v/c was under 0.6. When the number of pedestrians was 300/hour or lower, the difference in the delay time was quite insignificant regardless of v/c. In addition, as the inscribed circle of the roundabout was larger, the difference in the delay time decreased depending on v/c and the number of pedestrians.

Design of Maximum Green Time Parameters for Traffic Actuated Operation (감응식 신호운영을 위한 최대녹색시간의 설계)

  • KIM, Jin Tae
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.4
    • /
    • pp.123-134
    • /
    • 2002
  • 감응식 신호운영변수 설계에 관한 연구는 정주기식 신호운영변수 설계의 그것보다 그 수준이 현저히 미비하며 이는 감응식 신호운영 특성을 반영한 평가방법의 부재로 감응식 운영변수의 평가가 불가능하였기 때문이다. 본 논문은 최근에 소개된 평균 감응현시 녹색시간 추정 수리모형을 이용하여 Highway Capacity Manual (HCM) 지체도를 최소화하는 최대녹색시간의 설계방안을 제시한다. - '최소녹색시간'과 '단위연장시간'은 보행자 횡단시간 및 차량 차두시간 등 지역별 운전자/보행자의 특성과 관련이 있어 일반적인 최적화 설계 수리모형의 적용에 무리가 있어 제외한다. 제안된 설계방안은 감응식 운영논리를 토대로 감응현시 군의 평균녹색시간과 평균주기를 산정하며, HCM 지체도를 평가하고, 가능한 대안 중 지체를 최소화하는 최대녹색시간 운영변수 군을 '혼혈 유전자 알고리즘'으로 도출한다. 현장실험을 통해 도출이 불가능한 실제 최적치를 Corridor Simulation(CORSIM)모형을 이용하여 추정하였고 이를 제안된 설계방안으로 도출된 최대녹색시간 운영변수' 값들과 비교하였다. 비교결과 교차로 v/c 비율이 1.0 보다 낮을 시는 제안된 방법을 통해 설계된 최대녹색시간 운영변수 군이 최소 CORSIM 지체도를 산출하는 최대녹색시간 운영변수 군과 동일한 것으로, v/c비율이 1.0보다 높을 시는 다른 것으로 결과되었다. v/c비율이 1.0 보다 높은 경우는 정주기식 교차로 운영에 효율적이라 감응식 운영의 필요를 벗어나므로 제안된 최대녹색시간 설계방안은 감응식 신호운영 필요범위 내에서 효율적이다. 기존의 최대녹색시간 설계는 정수기식 최적녹색시간을 기준으로 최대녹색시간을 추정하며, 그러한 과정을 돕기 위하여 추정범위(설계자가 범위 내에서 임의로 선택함)를 제시하는 것이 기존의 연구임을 비교하면 본 연구에서 제안하고 있는 설계방법의 의미가 크다.

An Analysis on Signal Control Efficiency in a Three-Leg Intersection Adopting Pedestrian Push-Button System Following Pedestrian volume (3지 교차로에서 보행자 교통량에 따른 보행자작동신호기를 이용한 신호제어효율에 관한 분석)

  • Kim, Eung-Cheol;Cho, Han-Seon;Jung, Dong-Woo;Kim, Hyoung-Soo
    • International Journal of Highway Engineering
    • /
    • v.11 no.3
    • /
    • pp.121-128
    • /
    • 2009
  • This study has proposed the signal operating system to use both semi-actuated signal control and pedestrian push-button as a way to make up for the problems of 3 leg intersections which are operated inefficiently in the signal operation, one of the methods of traffic operations. In case of the semi-actuated signal control, it can reduce delay inside the intersection by serving to uncongested traffic on the main road where there is not much traffic volume on the secondary road and push-button signal can reduce unnecessary waiting time it could happen to vehicles by operating it though there is no pedestrian. Quantitative analysis was tried regarding the average delay reduction per vehicle using VISSIM, microscopic simulation program regarding how much effect it has compared with the existing signal control system and semi-actuated signal control system when the above two advantages are collected. The field test was performed for one three-leg intersection of Incheon. According to respectively signal control method pedestrian traffic changed and executed a sensitivity analysis. The result which compares the average delay time per a vehicle of scenarios, the signal control method of using the pedestrian push-button system in comparison with the fixed signal control method showed to decrease effect of a minimum 3.7 second (10%), a maximum 5.8 second (16%). When the pedestrian traffic volume was 20% or less of the measurement traffic volume, The signal control method of using the pedestrian push-button system appeared to be more efficient the semi-actuated signal control with object intersection.

  • PDF

A Study on the Introduction of Bus Priority Signal using Deep Learning in BRT Section (BRT 구간 딥 러닝을 활용한 버스우선 신호도입 방안에 관한 연구)

  • Lim, Chang-Sik;Choi, Yang-Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.59-67
    • /
    • 2020
  • In this study, a suitable algorithm for each BRT stop type is presented through the network construction and algorithm design effect analysis through the LISA, a traffic signal program, for the BRT stop type in the BRT Design Guidelines, Ministry of Land, Transport and Maritime Affairs, 2010.6. It was. The phase insert technique is the most effective method for the stop before passing the intersection, the early green technique for the stop after the intersection, and the extend green technique for the mid-block type stop. The extension green technique is used only because it consists of BRT vehicles, general vehicles and pedestrians. Analyzed. After passing through the intersection, the stop was analyzed as 56.4 seconds for the total crossing time and 29.8 seconds for the delay time. In the mid-block type stop, the total travel time of the intersection was 40.5 seconds, the delay time was 9.6 seconds, the average travel time of up and down BRT was 70.2 seconds, the delay time was 14.0 seconds, and the number of passages was 29.