본 논문에서는 보행자 및 배경 이미지로부터 HOG-PCA 특징을 추출하고 다항식 기반 RBFNNs(Radial Basis Function Neural Network) 패턴분류기과 최적화 알고리즘을 이용하여 보행자를 검출하는 시스템 설계를 제안한다. 입력 영상으로부터 보행자를 검출하기 위해 전처리 과정에서 HOG(Histogram of oriented gradient) 알고리즘을 통해 특징을 추출한다. 추출된 특징은 고차원이므로 패턴분류기 분류 시 많은 연산과 처리속도가 따른다. 이를 개선하고자 PCA (Principal Components Analysis)을 사용하여 저차원으로의 차원 축소한다. 본 논문에서 제안하는 분류기는 pRBFNNs 패턴분류기의 효율적인 학습을 위해 최적화 알고리즘인 PSO(Particle Swarm Optimization)을 사용하여 구조 및 파라미터를 최적화시켜 모델의 성능을 향상시킨다. 사용된 데이터로는 보행자 검출에 널리 사용되는 INRIA2005_person data set에서 보행자와 배경 영상을 각각 1200장을 학습 데이터, 검증 데이터로 구성하여 분류기를 설계하고 테스트 이미지를 설계된 최적의 분류기를 이용하여 보행자를 검출하고 검출률을 확인한다.
최근 삶의 수준의 향상과 의학 기술의 발전으로 노인 인구가 증가하고 있다. 하지만 늘어나는 노인 인구에 비례하여 신체적 노화로 거동이 어려운 노인의 수 또한 증가하는 추세이다. 실제로 많은 노인 인구가 거동이 불편해 정상적인 생활을 하지 못하고 있기 때문에 보행 시 적절한 힘을 보조해 줄 수 있는 보행 보조 장치의 개발이 필요하다. 이 같은 보행 보조 장치를 개발함에 있어 보행자의 보행 패턴이 고려된다면 보행자의 걸음걸이에 맞춰 자연스럽게 힘을 보조해 줄 수 있기 때문에 보행자의 보행 단계 분류에 관한 연구가 선행되어야 한다. 그래서 본 논문에서는 하지 근전도 신호를 이용해 보행 단계를 구분하는 방법을 제안하고자 한다. 근전도 신호는 근육이 움직일 때 발생하는 아주 작은 전기적인 신호이다. 근전도 신호는 작은 잡음에도 민감하며, 전극을 부착하는 근육의 위치에 따라서도 값의 차이가 크기 때문에 근전도 신호의 획득 및 처리 방법이 중요하다. 위를 위해 피실험자 별 근육의 위치와 보행 속도를 달리하여 근전도 신호를 획득하고 획득한 신호로부터 여러 특징 값을 추출한다. 그리고 새로운 데이터에 대해 적응성이 강하고 시간에 따라 변하는 근전도 신호의 특성을 잘 반영할 수 있으며 각 집합(class)의 비선형 분리가 가능한 퍼지 최대-최소 신경망(Fuzzy Min-Max Neural Network: FMMNN)을 이용해 보행 단계를 분류해 본다. 실험 결과를 통해 제안한 방법의 타당성을 검증해 보고 보행자, 보행속도, 근전도 측정을 위한 근육의 위치가 보행 패턴 분류에 미치는 영향을 알아본다.
무선통신 기술과 정보 기술을 이용해서 사용자 무선 단말에 다양한 정보를 제공하는 텔레매틱스 서비스는 차량 운전자, 탑승자 및 보행자 등 사용자에 따라 다양한 형태의 서비스로 진화하고 있다. 또한 무선통신망의 발전으로 인해 광대역 통신의 대용량 텔레매틱스 서비스로의 발전이 기대되고 있다. 본 논문에서는 텔레매틱스 서비스 중에서 대중교통의 편리한 사용을 위한 보행자 위주의 길안내 서비스에 대해 논한다. 보행자 대중교통 안내 서비스를 위한 요구 사항을 기반으로 서비스 기능을 정의하고 서비스를 분류함으로써 보행자의 도보 및 대중교통 안내 서비스를 제안한다. 보행자 대중교통 안내 서비스는 보행자 도보 길안내 기능, 출발지와 목적지 기반의 One-Stop 대중교통 안내 기능, 대중교통 정보 제공 기능, 경로 예약 기능, 개인화 기능으로 분류할 수 있으며 각 기능의 정의 및 구성 요건들을 제안한다.
본 논문에서는 정지 영상에서 물체를 검출하는 방법을 제안한다 제안하는 방법은 먼저 정지 영상 내에서 찾을 물체에 대해서 웨이블렛 변환을 통해서 템플릿을 만든다. 만들어진 템플릿은 웨이블렛 변환의 특징을 토대로 중요한 특징 벡터만 한곳에 모이게 된다. 그 중요한 특징 벡터를 모아놓은 템플릿을 토대로 영상 검색을 하는 것이다. 예를 들어 영상 내에서 보행자를 찾는다면, 보행자 영상을 웨이블렛 변환을 통해서 템플릿을 만든다. 만들어진 템플릿을 토대로 영상 내에서 보행자를 검색할 수 있는 분류자를 만든다. 검색한 영상 내에서 보행자랑 유사한 Positives를 이미 만들어진 분류자를 통해서 찾으면 찾은 결과를 가지고 만들어진 템플릿에 비교를 한 후 최종적으로 보행자를 찾아내는 시스템이다. 이 시스템은 꼭 보행자뿐만 아니라 사용자가 검색하기 원하는 물체를 웨이블렛을 통해서 템플릿화 해 놓으면 물체를 효과적으로 검색 할 수 있다.
본 논문은 보행자 재 검출 알고리즘, 즉 person Re-Identification 알고리즘에 대하여 다루고 있다. 기존의 CNN 네트워크를 이용한 보행자 재 검출 알고리즘의 경우, 실제 감시 카메라 네트워크를 이용하여 보행자 재 검출을 할 경우 주변 환경 조건이 급격하게 변하는 경우 잘못 검출하는 경우가 발생하는 것을 확인할 수 있다. 이는 보행자 검출 후 해당 영역에 대하여 보행자 재 검출을 하는데 있어서 배경 부분의 변화에 영향을 받는다는 것을 의미한다. 따라서 본 논문에서는 배경 부분의 영향에 의한 효과를 줄이기 위하여, 보행자 영역 분리 알고리즘을 이용하여 보행자 영역을 분리한 후, 보행자 재 검출을 수행하는 연구를 진행한다.
본 논문은 보행자 재 검출 알고리즘, 즉 person Re-Identification 알고리즘에 대하여 다루고 있다. 기존의 CNN 네트워크를 이용한 보행자 재 검출 알고리즘의 경우, 실제 감시 카메라 네트워크를 이용하여 보행자 재 검출을 할 경우 주변 환경 조건이 급격하게 변하는 경우 잘못 검출하는 경우가 발생하는 것을 확인할 수 있다. 이는 보행자 검출 후 해당 영역에 대하여 보행자 재 검출을 하는데 있어서 배경 부분의 변화에 영향을 받는다는 것을 의미한다. 따라서 본 논문에서는 배경 부분의 영향에 의한 효과를 줄이기 위하여, 보행자 영역 분리 알고리즘을 이용하여 보행자 영역을 분리한 후, 보행자 재 검출을 수행하는 연구를 진행한다.
본 논문에서는 지능형 영상 감시 시스템에서 보행자를 검출하고 추적을 수행하기 위해 은닉층 활성함수에 가우시안 대신 FCM를 사용한 RBFNNs 패턴분류기와 객체 추적 알고리즘인 Mean Shift를 융합한 시뮬레이터를 개발한다. 시뮬레이터는 검출부과 추적부로 나누며, 검출부에서는 입력 영상으로부터 기울기의 방향성을 이용한 HOG(Histogram of Oriented Gradient) 특징을 구하고 빠른 처리속도를 위해 PCA 알고리즘을 통해 차원수를 축소하고 pRBFNNs 패턴분류기를 통해 보행자를 검출 한다. 다음 추적부에서 객체 추적 알고리즘인 Mean Shift를 이용하여 검출된 보행자 추적을 수행한다.
본 논문에서는 열 영상카메라를 통해 입력 받은 영상을 CS-LBP(Center-symmetric LBP)와 랜덤 포레스트(Random forest)를 이용하여 보행자 휴먼 객체를 검출하는 방법을 제안한다. 우선 불필요한 후보영역을 줄이기 위해 열 영상의 표준편차, 밝기 평균, 밝기 최대값을 이용하여 이진화하고, 신체부위 중 가장 발열이 강한 얼굴부위를 핫스팟 영역으로 설정한다. 그 후, 핫스팟 영역에서 CS-LBP특징을 추출하여 결정 트리의 앙상블인 랜덤 포레스트 분류기를 이용하여 최종적인 보행자 휴먼 객체를 검증한다. CS-LBP와 랜덤 포레스트 분류기를 통해 실시간 보행자 객체의 검출이 가능하고, 높은 검출 성능을 나타내었다.
교통사고와 사회·경제적 손실 간의 연계성이 확인됨에 따라 사고 데이터에 기반을 둔 안전 정책 마련 및 중상·사망 등 그 심각도가 높은 교통사고의 절감 방안의 필요성이 제기되고 있다. 본 연구에서는 인구 대비 교통사고 사망자 비율이 높은 대전시를 대상지역으로 설정하고 보행자 교통사고 데이터를 수집한 후, 기계학습을 통해 최적알고리즘과 심각도 분류의 주요 인자를 도출하였다. 연구의 결과에 따르면, 적용한 9개 알고리즘 중 앙상블 기반의 학습 기법인 AdaBoost (Adaptive Boosting)와 RF (Random Forest)가 최적의 성능을 보여주었다. 이를 기반으로 도출된 대전시 보행자 교통사고 심각도의 주요 인자는 보행자의 연령이 70대 및 20대이거나 사고유형이 횡단사고에 의한 경우로 나타남에 따라 대전시 보행자 사고 저감 대책을 위한 고려요인으로 제안하였다.
자율주행 시스템에서, 카메라에 포착된 영상을 통하여 보행자를 분류하는 기능은 보행자 안전을 위하여 매우 중요하다. 기존에는 HOG(Histogram of Oriented Gradients)나 SIFT(Scale-Invariant Feature Transform) 등으로 보행자의 특징을 추출한 후 SVM(Support Vector Machine)으로 분류하는 기술을 사용했었으나, 보행자 특징을 위와 같이 수동(handcrafted)으로 추출하는 것은 많은 한계점을 가지고 있다. 따라서 본 논문에서는 CNN(Convolutional Neural Network)의 깊은 특징(deep features)과 전이학습(transfer learning)을 사용하여 보행자를 안정적이고 효과적으로 분류하는 방법을 제시한다. 본 논문은 2가지 대표적인 전이학습 기법인 고정특징추출(fixed feature extractor) 기법과 미세조정(fine-tuning) 기법을 모두 사용하여 실험하였고, 특히 미세조정 기법에서는 3가지 다른 크기로 레이어를 전이구간과 비전이구간으로 구분한 후, 비전이구간에 속한 레이어들에 대해서만 가중치를 조정하는 설정(M-Fine: Modified Fine-tuning)을 새롭게 추가하였다. 5가지 CNN모델(VGGNet, DenseNet, Inception V3, Xception, MobileNet)과 INRIA Person데이터 세트로 실험한 결과, HOG나 SIFT 같은 수동적인 특징보다 CNN의 깊은 특징이 더 좋은 성능을 보여주었고, Xception의 정확도(임계치 = 0.5)가 99.61%로 가장 높았다. Xception과 유사한 성능을 내면서도 80% 적은 파라메터를 학습한 MobileNet이 효율성 측면에서는 가장 뛰어났다. 그리고 3가지 전이학습 기법중 미세조정 기법의 성능이 가장 우수하였고, M-Fine 기법의 성능은 미세조정 기법과 대등하거나 조금 낮았지만 고정특징추출 기법보다는 높았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.