Proceedings of the Korean Society of Broadcast Engineers Conference
/
2017.06a
/
pp.33-35
/
2017
최근 영상 내에서 보행자를 검출하는 기술이 발전하면서 보행자 검출 기술이 다양한 분야에서 응용되고 있다. 영상 내에서 보행자들을 검출함으로써 보행자의 통행량이나 이동경로를 분석할 수 있고, 위험 지역이나 보안 지역에 진입하려는 보행자에게 경고를 줄 수도 있다. CCTV와 같이 고정된 카메라를 이용하여 촬영된 영상의 경우 배경 분리 기술을 적용할 수 있는데, 배경 분리 기술을 통해 영상 내에서 움직이는 물체의 영역을 검출해 낼 수 있다. 본 논문에서는 영상의 배경 분리 결과를 이용하여 보행자 검출의 정확도를 높이고자 한다. 영상 내에서 보행자를 검출 했을 때, 보행자 외에 다른 영역이 보행자로 검출되는 상황이 발생할 수 있다. 이로 인해 보행자 검출의 정확도가 낮아진다. 하지만 배경 분리 결과를 이용하여 전경 부분에서만 보행자가 검출되도록 하고 배경 부분에서는 보행자가 검출되지 않도록 한다면, 보행자가 아닌 영역이 보행자로 검출되는 현상을 막을 수 있다. 실제 HDA Person Dataset에서 실험을 해본 결과, 정량적인 성능 향상을 확인 할 수 있었다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2019.06a
/
pp.120-122
/
2019
본 논문은 보행자 재 검출 알고리즘, 즉 person Re-Identification 알고리즘에 대하여 다루고 있다. 기존의 CNN 네트워크를 이용한 보행자 재 검출 알고리즘의 경우, 실제 감시 카메라 네트워크를 이용하여 보행자 재 검출을 할 경우 주변 환경 조건이 급격하게 변하는 경우 잘못 검출하는 경우가 발생하는 것을 확인할 수 있다. 이는 보행자 검출 후 해당 영역에 대하여 보행자 재 검출을 하는데 있어서 배경 부분의 변화에 영향을 받는다는 것을 의미한다. 따라서 본 논문에서는 배경 부분의 영향에 의한 효과를 줄이기 위하여, 보행자 영역 분리 알고리즘을 이용하여 보행자 영역을 분리한 후, 보행자 재 검출을 수행하는 연구를 진행한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2018.06a
/
pp.102-104
/
2018
본 논문은 보행자 재 검출 알고리즘, 즉 person Re-Identification 알고리즘에 대하여 다루고 있다. 기존의 CNN 네트워크를 이용한 보행자 재 검출 알고리즘의 경우, 실제 감시 카메라 네트워크를 이용하여 보행자 재 검출을 할 경우 주변 환경 조건이 급격하게 변하는 경우 잘못 검출하는 경우가 발생하는 것을 확인할 수 있다. 이는 보행자 검출 후 해당 영역에 대하여 보행자 재 검출을 하는데 있어서 배경 부분의 변화에 영향을 받는다는 것을 의미한다. 따라서 본 논문에서는 배경 부분의 영향에 의한 효과를 줄이기 위하여, 보행자 영역 분리 알고리즘을 이용하여 보행자 영역을 분리한 후, 보행자 재 검출을 수행하는 연구를 진행한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.261-262
/
2020
보행자 재 검출 알고리즘, 즉 person Re-Identification 알고리즘은 주어진 영상 내에 존재하는 보행자들 중 특정 보행자를 검출해내는 방법이다. 최근까지 보행자 재 검출 알고리즘에 대한 여러 연구가 진행되어 오고 있지만 기존의 CNN 네트워크를 이용한 보행자 재 검출 알고리즘의 경우, 실제 영상 데이터를 이용하여 보행자 재 검출을 할 경우 주변 환경 조건이나 조명의 조건, 보행자를 촬영한 방향 등에 따라 정확도가 떨어지는 현상이 발행한다. 이에 따라, 보행자 재 검출 알고리즘을 수행하는데 있어서, 조명 등의 조건에 구애 받지 않고 정확한 검출을 할 수 있도록 style transfer를 이용하여 영상을 변형하여 보행자 재검출을 수행하는 연구를 진행한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2018.06a
/
pp.79-81
/
2018
최근 딥 러닝의 발전과 함께 보행자 검출 기술의 성능이 발전하면서 다양한 분야에서 응용되고 있다. 영상 내 보행자의 위치나 움직임을 파악함으로써 위험 지역이나 보안 지역에 접근하는 보행자를 찾아낼 수 있다. 일반적인 딥 러닝 기반의 물체 검출기는 멀리 있는 보행자와 같은 작은 물체를 검출 하는 데에 적합하지 않다. 또, 검출을 수행하기 위해서 큰 계산량을 필요로 하기 때문에, 동영상의 매 프레임 마다 수행하기 부적합 하다는 단점이 있다. 본 논문에서는 작은 물체도 잘 검출할 수 있도록 기존 YOLO 네트워크의 구조를 변경하고, 보행자 데이터를 이용하여 추가로 학습함으로써 보행자를 검출하는 성능을 증가시켰다. 그리고 검출한 보행자들에 대해 추적 기법을 이용함으로써, 동영상의 매 프레임 마다 검출을 수행하는 것을 피할 수 있도록 하였다. 실제로 DukeMTMC Dataset을 이용하여 실험을 해본 결과, YOLO 네트워크의 구조를 변경하고 추가 학습을 함으로써 검출 정확도가 개선되는 것을 확인할 수 있었다. 또, 추적 기법을 이용했을 때, 성능이 크게 떨어지지 않으면서 검출 속도를 개선할 수 있는 것을 확인할 수 있었다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2016.05a
/
pp.363-366
/
2016
In this paper, we propose a method for detecting pedestrian, problem-solving situations that occur in a cross. When a pedestrian crossing and other, there occurs a problem of detecting the other pedestrians for detecting a specific pedestrian in the image. The proposed method for solving the problem is as follows. First, select a specific pedestrian detected by bounding box, and extracts the area as a template. Detecting a pedestrian from the image using the HOG, and designated as a candidate region. The final choice of the pedestrian detected by comparison with a candidate pedestrian with the specific pedestrian extracted for template. In comparison, using the Template matching, Histogram comparison and LBP.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2017.06a
/
pp.85-88
/
2017
보행자 검출을 위한 기술이 많이 개발되고 있으며 HOG(Histograms of oriented)와 haar-like feature를 이용한 특징값 검출을 통해 보행자를 검출하는 방법들이 대표적이라 할 수 있다. 하지만 이 방법들은 보행자가 사물에 가려졌을 때 보행자를 검출하지 못한다는 단점이 있다. 이에 본 논문에서는 haar-like feature와 adaboost 학습알고리듬을 이용하여 보행자를 검출하고 kalman filter를 이용하여 보행자가 특정 사물에 가려지는 것 과 같은 occlusion 문제를 해결하여 보행자 검출 성능을 높이고자 하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2019.06a
/
pp.1-4
/
2019
최근에 딥러닝 기술을 적용한 보행자 검출 연구가 활발히 진행되고 있다. 연구자들은 딥러닝 네트워크를 이용하여 보행자 오검출율을 낮추는 방법에 대해 지속적으로 연구하여 성능을 꾸준히 상승시켰다. 그러나 대부분의 연구는 다중 스케일 보행자가 분포되는 저해상도 영상에서 보행자를 제대로 검출하지 못하는 어려움이 존재한다. 따라서 본 연구에서는 기존의 Faster R-CNN구조를 기반으로 하여 새로운 다중 특징 융합 레이어와 다중 스케일 앵커 박스를 적용하여 보행자 오검출율을 줄이는 MS-FRCNN(Multi-scaleFaster R-CNN)구조를 제안한다. 제안된 방식의 성능 검증을 위해 Caltech 데이터세트를 이용하여 실험한 결과, 제안된 MS-FRCNN방식이 기존의 다른 보행자 검출 방식보다 다중 스케일 보행자 검출에서 medium 조건하에 5%, all 조건하에 3.9% 나아짐을 알 수 있었다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2012.11a
/
pp.15-16
/
2012
본 논문에서는 중요도 맵을 이용하여 기존 보행자 검출 시스템의 성능을 향상시키는 기법을 제안한다. 기존 보행자 검출시스템이 수직 성분이 강한 물체를 보행자로 잘못 검출하는 문제를 개선하기 위해 제안하는 기법에서는 중요도 맵 정보를 이용하여 보행자가 아닌 배경 부분을 제외시킴으로써 보행자 검출 성능을 향상 시킨다. 실험결과를 통해 제안하는 기법의 성능을 확인한다.
Proceedings of the Korea Society of Information Technology Applications Conference
/
2007.05a
/
pp.38-46
/
2007
본 논문에서는 실시간으로 획득된 영상을 분석하여 움직이는 다수 물체를 검출하고, 카메라를 자동 제어하여 관심 보행자만을 추적하는 시스템을 제안한다. 다수 물체 영역 검출은 차영상과 이전변환 밀도값을 이용한다. 검출된 다수 물체 영역에서 사람의 구조적 정보와 형태 정보를 이용하여 나무들의 흔들림으로 인한 영역이나 차량의 움직임 영역은 제거되고, 관심 보행자 영역만을 검출하였다. 관심 보행자 추적은 무게중심 차를 이용한 움직임 정보와 k-means 알고리즘으로 구한 세 점의 평균 색상 정보를 이용한다. 원거리 관심 보행자는 인식률을 높이기 위해 줌을 실행하여 확대하고, 관심 보행자의 화면상 위치에 따라 카메라 방향을 자동으로 조정하여 관심 보행자반을 연속적으로 추적한다. 실험 결과, 제안한 시스템은 실시간으로 움직이는 다수 물체를 검출하고, 사람의 구조적 특정과 형태 정보로 관심 보행자만을 검출할 수 있었고, 움직임 정보와 색상정보로 관심 보행자를 연속적으로 추적할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.