• Title/Summary/Keyword: 보행교통

Search Result 584, Processing Time 0.024 seconds

Models for Determining the Vehicle and Pedestrian Volumes for the installation of Pedestrian Pushbuttons (보행자 작동신호기 설치기준 정립을 위한 적정 차량 및 보행자 교통량 추정모형)

  • YOON, Seung Sup;YANG, Jae Ho;KIM, Nam Seok
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.5
    • /
    • pp.488-496
    • /
    • 2015
  • The main reason to install pedestrian pushbuttons is improving traffic operations. The current guideline for the installation of signal systems with pedestrian pushbuttons is car-oriented. It is difficult to clearly understand the guideline because there isn't an in-depth study to compare the pros and cons of the pedestrian- and vehicle-oriented methods in terms of waiting time. Thus, this study aims to estimate the waiting times of pedestrians and vehicles. The two delay times are compared considering the hypothetical circumstances such as geometry, pedestrian crossing time, pedestrian/vehicle counts and arrival distribution. The results show that when the pedestrian traffic volume exceeds 97 ped/h in the case of a two-lane road (one lane in each direction) the pushbutton system is effective and beneficial to pedestrians. It means that the total waiting time of pedestrians is less than the one of vehicles. Additional four scenarios are designed and tested by varying the number of lanes and design speeds. In conclusion, the pushbutton signal is more beneficial for pedestrians when the number of pedestrians is less than or equal to 85, 70, and 70 ped/h for the three-lane scenario, the four-lane with the design speed of 80km/h scenario, and the four-lane with the design speed of 100km/h, respectively.

Development of Warrant for Scrambled Pedestrian Crossing (대각선 횡단보도의 정량적 설치기준에 관한 연구)

  • 손규홍;장명순;김영찬
    • Journal of Korean Society of Transportation
    • /
    • v.15 no.2
    • /
    • pp.105-122
    • /
    • 1997
  • 본 연구는 대각선 횡단보도의 정량적 설치기준을 정립하기 위하여 이상적인 조건에서의 교차로 각현시별 임계차선 교통량의 합($\sum_i$ CVi)을 600~1,800대로 변화를 주어 실험적 시뮬레이션 방법을 적용하였다. TRANSTY-7F 모형을 이용한 교차로 평균차량 지체도와 본 연구에서 정립한 보행지체모형을 이용한 교차로 평균 보행지체도와의 관계를 변수로 하여 대각선 횡단보도의 정량적 설치기준을 각 조건별로 산정한 결과 다음과 같은 결론이 도출되었다. 첫째, 동시신호시 교통량과 보행량의 비율이 1:1일 경우 대각횡단비율 20~40%에서는 $\sum_i$ CVi=1,050~1,150대 이하에서 대각선 횡단보도를 설치시 지체도 감소에 대한 편익을 얻을 수 있다. 둘째, 동시신호시 교통량과 보행량의 비율이 1:2일 경우 대각횡단비율 20~40%에서는 $\sum_i$ CVi=1,150~1,200대 이하에서 대각선 횡단보도를 설치시 지체도 감소에 대한 편익을 얻을 수 있다. 셋째, 선행 좌회전신호시 교통량과 보행량의 비율이 1:1일 경우 대각횡단비율 20~40%에서는 $\sum_i$ CVi=600~750대 이하에서 대각선 횡단보도를 설치시 지체도 감소에 대한 편익을 얻을 수 있다. 넷째, 선행 좌회전신호시 교통량과 보행량의 비율이 1:2일 겨우 대각횡단비율 20~40%에서는 $\sum_i$ CVi=750~900대 이하에서 대각선 횡단보도를 설치시 지체도 감소에 대한 편익을 얻을 수 있다.

  • PDF

Improvement of Pedestrian Convenience and Mobility by Applying the Walking Guidance System in Subway Stations (지하철 역사내 동선 분리 시스템을 활용한 보행편의 및 이동성 증진)

  • Lee, Joo-Yong;Kim, Taewan;You, So-Young
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.2
    • /
    • pp.204-213
    • /
    • 2015
  • The congestion of pedestrians impedes the utilization efficiency of a subway station. Conflicts among pedestrians due to unseparated pedestrian flows not only increase the impedance of pedestrian mobility but also negatively affect on pedestrian safety. This paper analyzes the travel characteristics of bi-directional pedestrian flow based on microscopic movements, and evaluates the operation efficiency on separating the traffic line. The subway station was simulated in a 2-D grid structure by applying Discrete Element Method, and the movement is organized in each cell of the grid. As a result, the model explicates that separating the traffic line and encouraging the 'Keep right rule' would be mostly effective for the conflicting flows. Therefore, applying the 'Walking Guidance System' would be efficient to improve the pedestrian convenience and mobility.

A Study on the Road Facilities Use Characteristics of the Transportation Vulnerable by AHP Analysis (AHP분석을 통한 교통약자의 도로시설 이용특성에 관한 연구)

  • KIM, Min Je;LEE, Young Woo
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.3
    • /
    • pp.276-283
    • /
    • 2015
  • Pedestrians have been exposed to dangerous traffic environments, in which walking spaces in a city decrease without improved facilities even though cars increase. Such poor walking environments are deadly dangerous to the vulnerable as well as the non-vulnerable. This study analyzed the road facilities use characteristics according to a type of vulnerability in order to improve traffic safety and walking environment for vulnerable pedestrians. This study surveyed the vulnerable in terms of issues that they encountered on existing walkways and conducted the analytic hierarchy process (AHP), which took all quantitative and qualitative variables into account. The results of Level-3 analysis were showed that the elderly and the disabled were partially similar; both felt most inconvenient at enter-exit sections, steep walkway and bad paved walkway. Unlike those results, people with children and/or infants answered that overpass or underpass walkways without lifting facilities were most inconvenient walking environments.

Methodology for Evaluating Effectiveness of In-vehicle Pedestrian Warning Systems Using a Driving Simulator (드라이빙 시뮬레이터를 이용한 차내 보행자 충돌 경고정보시스템 효과평가 방법론 개발 및 적용)

  • Jang, Ji Yong;Oh, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.2
    • /
    • pp.106-118
    • /
    • 2014
  • The objective of this study is to develop a methodology for evaluating the effectiveness of in-vehicle pedestrian warning systems. Driving Simulator-based experiments were conducted to collect data to represent driver's responsive behavior. The braking frequency, lane change duration, and collision speed were used as measure of effectiveness (MOE) to evaluate the effectiveness. Collision speed data obtained from the simulation experiments were further used to predict pedestrian injury severity. Results demonstrated the effectiveness of warning information systems by reducing the pedestrian injury severity. It is expected that the proposed evaluation methodology and outcomes will be useful in developing various vehicular technologies and relevant policies to enhance pedestrian safety.

A Study of Intelligent Traffic System for pedestrian safety (보행자 안전을 위한 지능적 교통 시스템 연구)

  • Lee, Do-Hee;Woo, Seung-Ho;son, bon-ki;Lee, Jae-ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1740-1741
    • /
    • 2015
  • 본 논문에서는 최근에 잦아지는 교통사고를 방지하기 위해 현재 교통시스템의 문제점을 인식하여 개선하고, 기존 교통 시스템을 지능화시킴으로써 보행자 안전을 제공하고자 기술적인 면을 추가하여 지능적 교통안전 시스템을 설계한다. 기존의 신호등과 횡단보도 대신 보행자와 운전자를 통제하는 바리케이트를 설치하였으며, 바리케이트 앞면에는 LED의 점등 카운터를 통해 교통 시스템을 구축하였다. 또한 진입 차량 속도를 측정하여 측정 속도 이상 초과 시 차량을 통제하는 속도 감응형 개폐시스템을 도입하였다. 본 논문은 지능적 교통 시스템을 도입하여 보행자 및 운전자가 무의식 속에 유발시키는 사고를 방지하고자 보완하였다.

Multi-directional Pedestrian Model Based on Cellular Automata (CA기반의 다방향 보행자 시뮬레이션 모형개발)

  • Lee, Jun;Bae, Yun-Kyung;Chung, Jin-Hyuk
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.11-16
    • /
    • 2010
  • Various researches have been performed on the topic of pedestrian traffic flow. At the beginning, the modeling and simulation method for the vehicular traffic flow was simply applied to pedestrian traffic flow. Recently, CA based simulation models are frequently applied to pedestrian flow analysis. Initially, the square Lattice Model is a base model for applying to pedestrians of counterflow and then Hexagonal Lattice Model improves its network as a hexagonal cell for more realistic movement of the avoidance of pedestrian conflicts. However these lattice models express only one directional movement because they express only one directional movement. In this paper, MLPM (the Multi-Layer Pedestrian Model) is suggested to give various origins and destinations for more realistic pedestrian motion in some place.

A Study of Walkway Level of service reckon with Pedestrian Characteristic on Complex-transit center (복합환승센터 인근 보행자도로의 시간대별 보행특성을 고려한 서비스수준에 관한 연구)

  • Lee, Gwang-Seon;Choe, Byeong-Mu;Geum, Gi-Jeong
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.5
    • /
    • pp.7-15
    • /
    • 2010
  • The walkway level of service (LOS) is conceptualized using pedestrian flow rate, speed, and density according to the Korean Highway Capacity Manual (KHCM). However, as it is based on the data of commuters at peak hours, it needs to be reevaluated considering various trip purposes and a pleasant pedestrian environment. Thus, the authors aimed to investigate and analyze the characteristics of each group: pedestrians during the peak hour and those during the non-peak hour. Then they were verified statistically for the walkway evaluation criteria. In this study, the authors investigated pedestrian speed and flow in a complex transit center walkway with diverse trip purposes by peak and non-peak hour. Then the authors statistically verified the differences between the groups. A model was built for estimating pedestrian density by speed and flow; it was used to calculate the walkway capacity (67.3p/m/m) corresponding to LOS E. The authors established new criteria for LOS, applying the LOS from the HCM. These standards can then be used as the design standards for pedestrian walkways.

An Improved LOS Analysis Method for Pedestrian Walkways Using Pedestrian Space (보행 점유공간을 이용한 보행자도로 서비스수준 분석방법론 개선 연구)

  • JUN, Sung Uk;SON, Yonug Tae
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.2
    • /
    • pp.168-179
    • /
    • 2016
  • This study describes an improved model for estimating pedestrian LOS (Level of Service) by utilizing the space occupied by pedestrians. The method introduced the concept of conflict along the bi-directional pedestrian flow which enables calculating conflict area and average travel time in walking. Especially, the method incorporates the idea of generalized density concept which can consider effective walking area and pedestrian flow rates that might vary during the analysis period. After establishing methodology, adjustments of pedestrian LOS criteria in term of walking space occupied by pedestrians were performed. As a result, walking-occupied space at capacity level is 0.68 and corresponding pedestrian flow rate was calculated as 80 persons/min/m, while different pedestrian-occupied spaces were ordered to classify LOS at the points where the gradient changes. Furthermore, the statistical verification of service levels has shown that there is significant difference among all LOS categories at 5% significance level.

Optimized Path Finding Algorithm for Walking Convenience of the People with Reduced Mobility (교통약자의 이동편의를 위한 최적경로 탐색 기법)

  • Moon, Mikyeong;Lee, Youngmin;Yu, Kiyun;Kim, Jiyoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.3
    • /
    • pp.273-282
    • /
    • 2016
  • There has been growing social interest recently in the movement rights of people with reduced mobility. However, it simply eliminates the temporary inconvenience of walking of people with reduced mobility because it focuses only on supply of institutional facilities. Therefore, we look forward to improving movement welfare by proposing an optimized path finding algorithm for people with reduced mobility that takes into consideration physical elements affecting their movement, such as slope, steps etc. We selected Walking barrier factor by analyzing previous studies and calculated the relative importance of Walking barrier factors using an Analytic Hierarchy Process(AHP). Next, through the fuzzy system, the Walking disturbance level of link, which integrates the weights of Walking barrier factors and the attributes of each link, is derived. Then, Walking path cost that takes into consideration the ‘length’ factors is calculated and an optimized path for people with reduced mobility is searched using Dijkstra’s Algorithm. Nineteen different paths were searched and we confirmed that the derived paths are meaningful in terms of improving the mobility of people with reduced mobility by conducting a field test. We look forward to improving movement welfare by providing a navigation service using the path finding algorithm proposed in this study.