• Title/Summary/Keyword: 보통골재

Search Result 103, Processing Time 0.025 seconds

Effect of Substituting Normal-Weight Coarse Aggregate on the Workability and Mechanical Properties of Heavyweight Magnetite Concrete (중량 자철석 콘크리트의 유동성 및 역학적 특성에 미치는 보통중량 굵은골재 치환율의 영향)

  • Mun, Jae-Sung;Mun, Ju-Hyun;Yang, Keun-Hyeok;Lee, Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.4
    • /
    • pp.439-446
    • /
    • 2013
  • The objective of this study is to evaluate the workability and various mechanical properties of heavyweight magnetite concrete and examine the reliability of the design equations specified in code provisions. The main parameters investigated were the water-to-cement ratio and substitution level of normal-weight coarse aggregate (granite) for magnetite. The oven-dried unit weight of concrete tested ranged between 2446 and $3426kg/m^3$. The measured mechanical properties included compressive strength development, stress-strain curve, splitting tensile strength, moduli of elasticity and rupture, and bond stress-slip relationship of concrete. Test results revealed that the initial slump of heavyweight magnetite concrete increased as the substitution level of normal-weight coarse aggregate increases. The substitution level of normal-weight coarse aggregate had little influence on the compressive strength and tensile resistance capacity of heavyweight concrete, while it significantly affected the modulus of elasticity and stress-strain curves of such concrete. The design equations of ACI 349-06 and CEB-FIP provisions mostly conservatively predicted the mechanical properties of heavyweight magnetite concrete, but the empirical equations for modulus of elasticity and splitting tensile strength need to be modified considering the unit weight of concrete.

Permeability and Freeze-Thaw Resistance of Latex Modified Concrete (라텍스 개질 콘크리트의 투수성 및 동결융해 저항 특성)

  • 김기헌;이종명;홍창우;윤경구
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.484-490
    • /
    • 2001
  • This study focused on the investigation of durability of latex modified concrete in the points of chloride ion permeability and freeze-thaw resistance as latex content variated such as 5%, 10%, 15% and 20%. When latex was mixed in concrete and cured, the concrete consisted of hydrated cement and aggregate interconnected by a film of latex particles. An increasing the amount of latex produced concrete with increased flexural strength, but with slightly lower compressive strength. The increase in flexural strength might be attributed to the latex films between the hydrated cement and aggregates, and the decrease in compressive strength to the flexibility of the latex component named by Butadiene. The rapid chloride permeability test was used to evaluate the relative permeability of latex-modified concretes and conventional concretes. The results showed that the permeability of latex-modified concretes was considerably lower than conventional concretes tested, which might be due to the latex filled in voids and interconnections of hydrated cement and aggregates by a film of latex particles. The freeze-thaw resistance of LMC was quite good comparing to conventional concrete. Air entraining agent has been used in conventional concrete to improve the freeze/thaw resistance, but latex modified concrete does not need additional air entraining agent for freeze-thaw resistance provided adequate cure occurs.

An Experimental Study on the Mechanical Properties of Concrete with High Temperatures and Cooling Conditions (고온 및 냉각조건에 따른 콘크리트의 역학적특성에 관한 실험적 연구)

  • Kim, Gyu-Yong;Kang, Yeoun-Woo;Lee, Tae-Gyu;Choe, Gyeong-Cheol;Yoon, Min-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.3
    • /
    • pp.323-331
    • /
    • 2012
  • Since the 1970s, the mechanical properties of concrete at high temperature, such as compressive strength, elastic modulus, thermal strain, etc. have been investigated. Internal and external factors should be effect to concrete elevated temperature. In particular, the thermal properties of aggregate and cooling conditions are most important to estimate residual mechanical properties. This study evaluates the mechanical properties of concrete with aggregate type and cooling methods. We use normal and light aggregate for different thermal properties, and also test mechanical properties to use ${\O}100{\times}200$ mm cylinder specimen according to target temperature, slow cooling and water cooling. We found that normal aggregate concrete that uses is more highly influenced by cooling conditions than concrete that uses light aggregate concrete. In addition, the residual mechanical properties of concrete increase as cooling velocity lowers.

Litholohical and Mechanical Characteristics of Crushed Limestone Aggregates (쇄석 골재용 석회암의 암석학적 및 역학적 특성)

  • 진호일;민경원;백환조;연규석
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.3
    • /
    • pp.119-126
    • /
    • 1997
  • Recently, duc to highly increased consumption of' ngg~.egatc>s f o ~ . construction. studies have focused on the effective utilization of rock wastes abandoned so far. This study was designed, firstly, to determine t,hc petrological, g'ochemical and mechanical cha~,acte~istics of' crushed limestone aggregates in thc Samhwa district for suitable construction aggregates and, secondly, to offer basic data for cff'ective utilization of low grade limestones. Results of' the petrographic st,udy indicates that the crushed limestone aggregates in the Samhwa district can bo separate4 into two groups, namely f'inc-grained and cowlxcgrained limestones. Dominantly distributed fine-grained limestone containing some dolomite has higher Mgo and $SiO_2$ contents compared to the coarse-graincd limestonr. It, can be classified as medium strength rock by the physical and mcxhanical pi.opertics. I3ased on the size of' mineral grains and chemical compositions, it is suggested that the crushed limestone aggregates in t,his study area would bctkr be u s ~ i for asphalt concr.ctt., road pavement, or railroad ballast materials than for cement concrete.

An Experimental Study for the Strength Variations of High-strength Lightweight Concrete According to Grain-size of Artificial Lightweight Aggregate (인공경량골재의 입도에 따른 고강도 경량콘크리트의 강도변화에 대한 실험적 연구)

  • Kim, Sung Chil;Park, Ki Chan;Choi, Hyoung Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.209-217
    • /
    • 2011
  • In recent days, while taller and more massive structures such as huge bridges and super skyscrapers have been welcomed, the structural stabilization in design and construction have been gradually limited due to the major weakness of current concrete which is relatively heavier when compared with its strength. To improve the weakness of the current concrete, The lightweight concrete with light weight and high strength should be used; however, not many researchers in Korea have studied on the lightweight concrete. Generally, artificial lightweight aggregate produced through high-temperature-plasticization has a possibility of its body-expansion with many bubbles. Therefore, depending on the size of aggregate, the effects of bubbles on the specific weight and strength of the lightweight concrete should be studied. In this study, considering grain-size, the mix design of the artificial lightweight aggregate produced through the high-temperature-plasticization and the body-expansion of waste and clay from the fire power plant in Korea was conducted. The experiment to analyze the variation in specific weight and strength of the lightweight concrete was followed. From these experiments, the optimized grain-size ratio of the artificial lightweight aggregate for the enhancement of high-strength from the lightweight concrete was revealed.

Improving Quality of Eco-Mortar Incorporating Blast Furnace Slag and Recycled Aggregate Depending on Replacement Gypsum and Cement (고로슬래그 미분말과 순환잔골재를 사용하는 친환경 모르타르에 탈황석고 및 시멘트에 의한 품질향상)

  • Baek, Byung Hoon;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.2
    • /
    • pp.193-199
    • /
    • 2015
  • As a solution of both environmental issue of reducing carbon dioxide emission and sustainable issue of exhausting natural resources, in concrete industry, many research on recycling various by-products or industrial wastes as the concrete materials has been conducted. The aim of this research is feasibility analysis of additional reaction with ordinary Portland cement and flue gas desulfurization gypsum based on the blast furnace slag and recycled fine aggregate based mortar to achieve the normal strength range. Consequently, in the case of mortar replaced 10% FGD and 30% OPC for BS, 80% of plain OPC mortar's compressive strength was achieved. Furthermore, when the water-to-binder ratio is decreased to keep the practically similar level of flow, it is expected to be achieve the equivalent compressive strength to plain OPC mortar.

Performance Evaluation of Artificial Lightweight Aggregate Mortar Manufactured with Waste Glass (폐유리로 제조된 인공경량골재를 이용한 모르타르의 물리적 성능에 대한 평가)

  • Kim, Seong-Soo;Lee, Jeong-Bae;Nam, Ba-Reum;Park, Kwang-Pil
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.147-152
    • /
    • 2009
  • The compressive strength test, bulk density and mortar absorption ratio were carried out to utilize the data as the basic sources for the lightweight mortar and the lightweight concrete, through the study on the physical characteristics of the artificial lightweight aggregate (ALA) made of waste glasses, which was developed for the first time in the country. On the basis of these experiments, the density and the unit volume weight of the ALA showed the value less than 50% of the common aggregate due to the independent pore structure, and the mortar that contains ALA had no big difference from the Control mortar in the test of the absorption ratio. It is judged that this happens based on the internal independent pore structure of the ALA. In case of the mortar containing ALA, there was a tendency of declination in the compressive strength and the bending strength as the mixing rate is increasing, but all mortar showed more than 70% of the Control mortar compressive strength except for the La50 mortar. Hereafter, it is judged that according to the control of the mixing ratio of mineral admixing agent, water and cement, it will realize the equal strength to the control mortar, and the long term edurance is needed to be considered together.

A Study for Recycling CO2 Silicate Bonded Waste Foundry Sand as Fine Aggregate for Concrete (CO2형 폐주물사를 콘크리트용 잔골재로 재활용하기 위한 연구)

  • 문한영;최연왕;송용규
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.420-429
    • /
    • 2002
  • The amount of $CO_2$-silicate bonded waste foundry sand(WFS) occurred in Korea is over 800,000 ton per year. WFS, as a by-product, is generated through manufacturing process of foundry may affect our environmental contamination, The reason is that WFS has been buried itself not less than 90% out of total WFS. So, it can give damage on the ground of contamination in soil and underwater. Therefore, it is necessary to establish the method recycling WFS because of being intensified waste management law. In this study, we performed the research with respect to harmful component analysis, the qualities of WFS mortar and concrete mixed with WFS. As the results the specific gravity of WFS is the same as that of natural aggregate while unit weight and percentage of solids of WFS are smaller than those of it. But it is found that WFS can be used by substituting WFS for natural aggregate after control of poor grade of WFS. The flowability of mortar and concrete with WFS is inferior to those of natural aggregate, and the setting time of concrete with WFS is faster than that with only natural aggregate, On the contrary, the bleeding of concrete with WFS is shown good result, and compressive and tensile strength of concrete substituted WFS for 30% are higher than those with only natural aggregate regardless of elapsed time.

Engineering Characteristics of Ultra High Strength Concrete with 100 MPa depending on Fine Aggregate Kinds and Mixing Methods (잔골재 종류 및 혼합방법 변화에 따른 100 MPa 급 초고강도 콘크리트의 공학적 특성)

  • Han, Min-Cheol;Lee, Hong-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.536-544
    • /
    • 2016
  • Recently, with the increase in the number of high rise and huge scaled buildings, ultra-high strength concrete with 80~100 MPa has been used increasingly to withstand excessive loads. Among the components of concrete, the effects of the kinds and properties of fine aggregates on the performance and economic advantages of ultra-high strength concrete need to be evaluated carefully. Therefore, this study examined the effects of the type of fine aggregates and mixing methods on the engineering properties of ultra-high strength concrete by varying the fine aggregates including limestone fine aggregate (LFA), electrical arc slag fine aggregate (EFA), washed sea sand (SFA), and granite fine aggregate (GFA) and their mixtures. Ultra-high strength concrete was fabricated with a 20 % water to binder ratio (W/B) and incorporated with 70 % of Ordinary Portland cement: 20 % of fly ash:10 % silica fume. The test results indicate that for a given superplasticizer dose, the use of LFA resulted in increases in slump flow and L-flow compared to the mixtures using other aggregates due to the improved particle shape and grading of LFA. In addition, the use of LFA and EFA led to enhanced compressive strength and a decrease in autogenous shrinkage due to the improved elastic properties of LFA and the presence of free-CaO in EFA, which resulted in the formation of C-S-H.

Utilization of Electric Arc furnace Slag md Converter Slag after Aging for Concrete Aggregate (콘크리트용 골재로서 에이징처리한 제강슬래그외 활용)

  • 문한영;유정훈
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.597-607
    • /
    • 2002
  • Electric arc furnace and converter slag are produced by about 6 millions tons in Korea at 2000 year. But compared with blast furnace slag, those are utilized only in unvalued material like landfill and road construction. There are unstable materials, like free CaO, in electric arc furnace and converter slag at steel-manufacturing process. This might cause volume expansion in concrete, if electric arc furnace and converter slag aggregates were used in concrete. This expansion may reach to crack or collapse of concrete. It is therefore settled by standard specification for concrete that electric arc furnace and converter slag aggregates have not to use in concrete. First of all, volume stability and stabilized process should be solved in electric arc furnace and converter slag aggregate to use in concrete. In this study, 6 types of aging are evaluated for effects of stabilization to reduce the expansion of electric arc furnace and converter slag. h converter slag aggregate, these types of aging are not good for volume stability for concrete aggregate, and even if converter slag aggregate is treated with aging, concrete with it has some problems that strength is reduced with curing days. But in electric arc furnace slag aggregate treated with hotwater and steam aging, the expansion of electric arc furnace slag aggregate is reduced about two times than that of converter slag aggregate, and electric arc furnace slag aggregate concrete has good results in strength compared with control concrete using crushed stone.