• Title/Summary/Keyword: 보압해석

Search Result 30, Processing Time 0.023 seconds

Injection mold development applying starting mold material, urethane resin(TSR-755) (우레탄레진(TSR-755)을 적용한 시작형 사출금형 연구)

  • Kim, Kwang-Hee;Kim, Jeong-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4392-4397
    • /
    • 2012
  • In this study, we used the commercial package (Unigraphics) to construct a junction box cable car when laser plastic parts have been processed using urethane resin(TSR-755) as a starting mold material. After construction, we carried out the filing, packing, cooling, and deforming analyzation using Injection Molding Analysis (Simpoe-Mold) to determine the gate positioning and automatic cooling cycle through the examination. The results show that inserting into the injection mold after processing ceramic has reduced the time of thermal conductivity of molding and cooling; and quick selection of gates and cooling lines could possibly cause an improvement of productivity.

Optimization of Injection Mold Fluidic System for the Square-type Cosmetic Case by Injection Molding Analysis Method (사출성형해석을 통한 화장품 사각 외장케이스 금형 유동시스템 구조 최적화)

  • Yoon, Gil-Sang;Kim, Gun-Hee;Lee, Jeong-Won;Sohn, Jong-In;Seo, Tae-Il;Kim, Yoo-Jin;Lee, Jung-Bae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.514-517
    • /
    • 2011
  • 본 연구에서는 사각형태 화장품 케이스 사출성형 시 발생되었던 수지 미성형 불량을 해결하기 위하여 사출성형해석 기술을 통해 성형품 형상변경 및 사출금형 내 유동 시스템 수정방안 도출을 수행하였다. 대상제품인 사각형태 화장품 케이스는 상측부 케이스로서 케이스 외관에 게이트 및 취출흔적이 남지 않아야 함에 따라 측면부 게이트 적용으로 유동거리가 길어져 미성형 불량이 다수 발생하는 제품이다. 따라서, 수지 유동성 향상과 더불어 효율적인 보압전달을 통하여 수지 충전 및 변형발생 저감을 위하여 성형품 형상변화 및 유동시스템 변화에 따른 사출성형해석을 수행하고 결과를 고찰하였다. 이로써 최종적으로 수지 미충전으로 인한 미성형 불량을 제거하고 성형품 변형을 줄일 수 있는 수지유동시스템 수정방안을 제시하였다.

  • PDF

Analysis of Packing Procedure Using Penalty Formulation in Injection Molding (사출성형에서의 Penalty Formulation을 이용한 Packing 과정 해석)

  • Kang, Sung-Yong;Kim, Seung-Mo;Kim, Sung-Kyung;Lee, Woo-Il;Kim, Dae-Hwan;Kim, Woo-Kyu;Kim, Hyung-Chae
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.916-921
    • /
    • 2004
  • The penalty method has been widely applied to analyses of incompressible fluid flow. However, we have not yet found any prior studies that employed penalty method to analyze compressible fluid flow. In this study, with an eye on the apparent similarity between the slight compressible formulation and the penalty formulation, we have proposed a new approximate approach that can analyze compressible packing process using the penalty parameter l. Based on the assumption of the isothermal flow, a set of reference solutions was obtained to verify the validity of the proposed scheme. Furthermore, we have applied the proposed scheme to the analysis of the packing process of different cases.

  • PDF

Analysis of Packing Procedure Using Penalty Formulation in Precision Injection Molding (정밀 사출성형에서의 Penalty Formulation을 이용한 Packing 과정 해석)

  • Kim Sun-Kyung;Kim Seung-Mo;Choi Doo-Sun;Lee Woo-Il;Kang Sung-Yong
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.105-110
    • /
    • 2005
  • The penalty method has been widely applied to analyses of incompressible fluid flow. However, we have not yet found any prior studies that employed penalty method to analyze compressible fluid flow. In this study, with an eye on the apparent similarity between the slight compressible formulation and the penalty formulation, we have proposed a modified approximate approach that can analyze compressible packing process using the penalty parameter, which is an improvement on an earlier formulation (KSME, 2004B). Based on the assumption of the isothermal flow, a set of reference solutions was obtained to verify the validity of the proposed scheme. Furthermore, we have applied the proposed scheme to the analysis of the packing process of different cases.

  • PDF

Determination of Molding Conditions of Double-Shot Injection Mold for the Computer Mouse via Three-Dimensional Injection Molding Analysis (3 차원 사출성형 해석을 통한 컴퓨터 마우스 제작용 이중사출성형 금형의 공정조건 결정)

  • Ahn, Dong-Gyu;Park, Min-Woo;Park, Jeong-Woo;Kim, Hyung-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1619-1625
    • /
    • 2011
  • The objective of this study determine the molding conditions of a double-shot injection mold for fabricating a computer mouse using different materials, by performing three-dimensional injection molding analysis. In order to select the optical injection molding conditions, the effects of the injection time, the maximum injection pressure, the effect of packing time on the injection molding characteristics, and the product qualities were quantitatively examined. From the results of the injection molding analysis, the optimal injection molding conditions of the double-shot injection mold, which leads the molded product to the minimized shrinkage and deflection, were estimated. The results of the injection molding experiments, showed that an appropriate computer mouse can be fabricated using different materials when the identified optimal injection molding conditions are adopted.

A study on the mold design improvement of the clamp chuck by using CAE simulation (CAE 응용설계 기법을 이용한 클젬프 척(Clamp chuck)의 금형설계 개선에 관한 연구)

  • 신명균;허용정;강성남
    • Proceedings of the KAIS Fall Conference
    • /
    • 2000.10a
    • /
    • pp.74-77
    • /
    • 2000
  • 사출성형에 관한 연구는 오랜 역사를 가지고 있으며 공정 시뮬레이션을 위한 상용화된 CAE 프로그램을 포함하여 많은 연구가 진행되는 분야중의 하나이다. 그러나 다양한 고분자 재료의 성질, 금형의 복잡한 형상 및 성형조컨 둥의 변화로 인해 금형설계 및 제작 그리고 사출성형시 상당한 어려움을 겪게 된다. 사출성형 공정에서는 금형온도, 플라스틱 재료, 냉각수, 보압과 사출압 등의 여러 가지 공정변수가 있어 현장전문가의 경험에 의해 사출금형의 제작이 이루어지는 경우가 보통이다 이와 같은 경험에 의한 금형 제작은 상당한 납기지연과 노동집약적인 방식으로 흘러가게 된다. 금형 제작시 가장 고려해야 될 사항 중의 하나는 사출성형품의 수축이다. 사출성형에서 광음수지는 냉각, 고화하면서 수축하는데 성형품 치수를 유지하기 위해서는 수축하는만큼 금형의 치수를 보정하여야 한다. 이 수축률은 사용수지의 종류와 성형품 크기, 살두께 등에 따라 다르다. 또 동일한 수지일 경우에도 성형조건에 따라 변화하고 특히 배향성을 가진 수지는 유동방향에 따라서도 변화가 있다. 즉, 금형의 온도가 높으면 수축률은 증가하고 사출압력이 높으면 감소한다. 또한 살두께가 두껍고 길이가 길 때 수축률은 증가한다 방향성이 있는 수지는 유동방향에 대하여 지각방향에서 가장 적다. 특히 방향성이 현저한 HDP에서는 유동방향에 따라 수축차가 크므로 성형할 때 변형을 일으키는 경우가 많다. 일반적으로 PE, PP. PA와 같은 결정성 수지는 PS, SAM, ABS 등의 비결정성 수지보다 수축률이 크다. 본 연구에서는 한조산업사에서 제작한 '클랠프 척' 금형 제작과정에서 성형품의 수축으로 인한 금형의 치수보정에 있어서의 문제점을 유동해석 전용 CAE 프로그램인 C-mold를 사용하여 해석하고 평가하였다. 그리하여 현장 전문가가 경험적으로 여러 번의 시행착오를 거쳐 완성된 금형을 제작하던 기존의 방법보다 체계적이고 합리적이며 또한 신속하게 문제를 해결함으로써 궁극적으로 금형설계 및 제작기간을 단축하고자 한다.

Optimization Condition for Injection Molding of TV Speaker Grille Using CAE (CAE를 이용한 TV Speaker Grille 사출 성형의 최적화)

  • 김범호;장우진;김정훈;정지원;박영훈
    • Polymer(Korea)
    • /
    • v.25 no.6
    • /
    • pp.855-865
    • /
    • 2001
  • The optimization condition of injection molding for a commercial product of TV speaker grille of A Company was induced using a CAE software of Moldflow. The flow and packing phase analysis was performed by using flow balance, runner balance, and the intermediate one by using the above two balances, which were used for controlling the amount of packing resins into the cavity, Later, the analysis performed by using the measured viscosity (local database) at various shear rates and the results were compared with the computer simulation using the standard database. Flow balance induced minimized weld line resulted in a better appearance and physical properties of the were line, but exhibited a disadvantage of large deformation and gas formation due to over-packing of the molten resin in the center of the speaker grille. Runner balance improved the disadvantage of the flow balance by controlling the amount of molten resin injected from the gate, however resulted reduced mechanical properties and poor appearance of the weld line. However, the modified method induced from the flow and runner balance improved the disadvantages by changing the runner size. In addition, the analyses based on the local database and the standard database were compared. Although the measured viscosity was slightly higher and the temperature distribution was broader than the standard database, no distinct difference was obtained from the analysis using the two different databases.

  • PDF

Determined Car Door Latch Injection Molding Process Conditions through the Finite Elements Analysis (유한요소 해석을 통한 차량용 도어 래치 사출성형 공정조건 결정)

  • Lee, Jung-Hyun;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.499-508
    • /
    • 2016
  • Injection molding is a method for manufacturing many products, wherein a plasticized resin is injected into a mold at high pressure and hardened. According to the method, the product can be manufactured into various forms, and the mass production of up to tens of thousands of products is possible. The purpose of this study was to determine the process conditions for manufacturing a door latch for automobiles, through an analysis of the injection molding method. To calculate an appropriate injection flow for injection molding, a primary analysis for comparing the injection time, pressure, flow pattern, consolidation range, shear stress, shear rate, and weld line, as well as a secondary analysis for determining the conditions for stabilizing the molding temperature, holding pressure, and cooling process, were conducted. The characteristics of injection molding, and their influence on the product quality are discussed. No weld line and pores were observed on the products that had been manufactured based on the process conditions determined above. In addition, there were no flaws regarding the deformation compared to the prototype. Therefore, the manufacture of a product under the conditions determined in this study can reduce the defect rate compared to the existing production, and the process is also more competitive due to reduced production time.

Comparison of Molding Characteristics for Multi-cavity Molding in Conventional Injection Molding and Injection Compression Molding (다수 개 빼기 성형에서 일반사출성형과 사출압축성형의 성형특성 비교)

  • Lee, Dan Bi;Nam, Yun Hyo;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.144-149
    • /
    • 2014
  • Large residual stresses are remained in the conventional injection molded products because of the high cavity pressure in packing phase during injection molding process. Conventional injection molding (CIM) invokes distribution of cavity pressure and it has a limitation to obtain product with uniform physical property. Multi-cavity conventional injection molding contains quality deviation among the cavities since flow imbalance occurs during filling phase. Injection compression molding (ICM) is adopted to overcome these limitations of CIM. In this study, molding characteristics of CIM and ICM have been investigated using multi-cavity injection mold. Researches were performed by both experiment and computer simulation through observations of birefringence for transparent resins, polycarbonate and polystyrene in CIM and ICM. As a result, low and uniform birefringence and mold shrinkage were showed in the specimens by ICM that could give a uniform cavity pressure. Deviation of physical property among the specimens in multi-cavity mold shown in CIM was significantly reduced in the specimens by ICM. Through this study it was concluded that the ICM in multi-cavity molding was valid for molding products with uniform property in an individual cavity and also reduced property deviation among the cavities.

Investigation of the Molding Conditions to Minimize Residual Stress and Shrinkage in Injection Molded Preform of PET Bottle (PET 병용 프리폼 사출성형에서 잔류응력과 수축 최소화를 위한 성형조건의 연구)

  • Cho, Sung-Hwan;Hong, Jin-Su;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.35 no.5
    • /
    • pp.467-471
    • /
    • 2011
  • PET bottle is manufactured by blow molding the preform, which is molded by injection molding. The neck part of the preform of PET bottle for juice or grain-based beverage is crystallized before blowing to improve heat resistance at the entrance of the bottle. However, residual stress, developed during injection molding of preform, prevents the crystallization. In order to release the residual stress in the preform, the preform is annealed after the injection molding. If the residual stress is reduced by optimizing the injection molding conditions of preform the annealing time would be shortened. In this study, the optimum conditions for minimizing the residual stress and increasing dimensional accuracy of the injection molded preform are suggested through CAE analysis. In order to optimize the molding conditions, minimizing residual stress and shrinkage, computer simulations have been carried out with help of design of experiment scheduling. Injection temperature, initial packing pressure and filling time were selected for control parameters. Residual stress was affected by injection temperature and filling time. Shrinkage was affected by injection temperature. It was found that maximum residual stress, distribution of residual stress and shrinkage were decreased by 22%, 40% and 25%, respectively at an optimum molding condition compared with the results of previous molding condition.