• Title/Summary/Keyword: 보안 제어

Search Result 1,534, Processing Time 0.021 seconds

Unsupervised Learning-Based Threat Detection System Using Radio Frequency Signal Characteristic Data (무선 주파수 신호 특성 데이터를 사용한 비지도 학습 기반의 위협 탐지 시스템)

  • Dae-kyeong Park;Woo-jin Lee;Byeong-jin Kim;Jae-yeon Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.147-155
    • /
    • 2024
  • Currently, the 4th Industrial Revolution, like other revolutions, is bringing great change and new life to humanity, and in particular, the demand for and use of drones, which can be applied by combining various technologies such as big data, artificial intelligence, and information and communications technology, is increasing. Recently, it has been widely used to carry out dangerous military operations and missions, such as the Russia-Ukraine war and North Korea's reconnaissance against South Korea, and as the demand for and use of drones increases, concerns about the safety and security of drones are growing. Currently, a variety of research is being conducted, such as detection of wireless communication abnormalities and sensor data abnormalities related to drones, but research on real-time detection of threats using radio frequency characteristic data is insufficient. Therefore, in this paper, we conduct a study to determine whether the characteristic data is normal or abnormal signal data by collecting radio frequency signal characteristic data generated while the drone communicates with the ground control system while performing a mission in a HITL(Hardware In The Loop) simulation environment similar to the real environment. proceeded. In addition, we propose an unsupervised learning-based threat detection system and optimal threshold that can detect threat signals in real time while a drone is performing a mission.

Detection of Abnormal CAN Messages Using Periodicity and Time Series Analysis (CAN 메시지의 주기성과 시계열 분석을 활용한 비정상 탐지 방법)

  • Se-Rin Kim;Ji-Hyun Sung;Beom-Heon Youn;Harksu Cho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.9
    • /
    • pp.395-403
    • /
    • 2024
  • Recently, with the advancement of technology, the automotive industry has seen an increase in network connectivity. CAN (Controller Area Network) bus technology enables fast and efficient data communication between various electronic devices and systems within a vehicle, providing a platform that integrates and manages a wide range of functions, from core systems to auxiliary features. However, this increased connectivity raises concerns about network security, as external attackers could potentially gain access to the automotive network, taking control of the vehicle or stealing personal information. This paper analyzed abnormal messages occurring in CAN and confirmed that message occurrence periodicity, frequency, and data changes are important factors in the detection of abnormal messages. Through DBC decoding, the specific meanings of CAN messages were interpreted. Based on this, a model for classifying abnormalities was proposed using the GRU model to analyze the periodicity and trend of message occurrences by measuring the difference (residual) between the predicted and actual messages occurring within a certain period as an abnormality metric. Additionally, for multi-class classification of attack techniques on abnormal messages, a Random Forest model was introduced as a multi-classifier using message occurrence frequency, periodicity, and residuals, achieving improved performance. This model achieved a high accuracy of over 99% in detecting abnormal messages and demonstrated superior performance compared to other existing models.

A Study on Movement of the Free Face During Bench Blasting (전방 자유면의 암반 이동에 관한 연구)

  • Lee, Ki-Keun;Kim, Gab-Soo;Yang, Kuk-Jung;Kang, Dae-Woo;Hur, Won-Ho
    • Explosives and Blasting
    • /
    • v.30 no.2
    • /
    • pp.29-42
    • /
    • 2012
  • Variables influencing the free face movement due to rock blasting include the physical and mechanical properties, in particular the discontinuity characteristics, explosive type, charge weight, burden, blast-hole spacing, delay time between blast-holes or rows, stemming conditions. These variables also affects the blast vibration, air blast and size of fragmentation. For the design of surface blasting, the priority is given to the safety of nearby buildings. Therefore, blast vibration has to be controlled by analyzing the free face movement at the surface blasting sites and also blasting operation needs to be optimized to improve the fragmentation size. High-speed digital image analysis enables the analyses of the initial movement of free face of rock, stemming optimality, fragment trajectory, face movement direction and velocity as well as the optimal detonator initiation system. Even though The high-speed image analysis technique has been widely used in foreign countries, its applications can hardly be found in Korea. This thesis aims at carrying out a fundamental study for optimizing the blast design and evaluation using the high-speed digital image analysis. A series of experimentation were performed at two large surface blasting sites with the rock type of shale and granite, respectively. Emulsion and ANFO were the explosives used for the study. Based on the digital images analysis, displacement and velocity of the free face were scrutinized along with the analysis fragment size distribution. In addition, AUTODYN, 2-D FEM model, was applied to simulate detonation pressure, detonation velocity, response time for the initiation of the free face movement and face movement shape. The result show that regardless of the rock type, due to the displacement and the movement velocity have the maximum near the center of charged section the free face becomes curved like a bow. Compared with ANFO, the cases with Emulsion result in larger detonation pressure and velocity and faster reaction for the displacement initiation.

KANO-TOPSIS Model for AI Based New Product Development: Focusing on the Case of Developing Voice Assistant System for Vehicles (KANO-TOPSIS 모델을 이용한 지능형 신제품 개발: 차량용 음성비서 시스템 개발 사례)

  • Yang, Sungmin;Tak, Junhyuk;Kwon, Donghwan;Chung, Doohee
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.287-310
    • /
    • 2022
  • Companies' interest in developing AI-based intelligent new products is increasing. Recently, the main concern of companies is to innovate customer experience and create new values by developing new products through the effective use of Artificial intelligence technology. However, due to the nature of products based on radical technologies such as artificial intelligence, intelligent products differ from existing products and development methods, so it is clear that there is a limitation to applying the existing development methodology as it is. This study proposes a new research method based on KANO-TOPSIS for the successful development of AI-based intelligent new products by using car voice assistants as an example. Using the KANO model, select and evaluate functions that customers think are necessary for new products, and use the TOPSIS method to derives priorities by finding the importance of functions that customers need. For the analysis, major categories such as vehicle condition check and function control elements, driving-related elements, characteristics of voice assistant itself, infotainment elements, and daily life support elements were selected and customer demand attributes were subdivided. As a result of the analysis, high recognition accuracy should be considered as a top priority in the development of car voice assistants. Infotainment elements that provide customized content based on driver's biometric information and usage habits showed lower priorities than expected, while functions related to driver safety such as vehicle condition notification, driving assistance, and security, also showed as the functions that should be developed preferentially. This study is meaningful in that it presented a new product development methodology suitable for the characteristics of AI-based intelligent new products with innovative characteristics through an excellent model combining KANO and TOPSIS.