• Title/Summary/Keyword: 보상 확률

Search Result 114, Processing Time 0.019 seconds

Determinants Factors Analysis of Job Retention for Injured Workers after Return-to-Work Using Recurrent Event Survival Analysis (산재근로자의 직업복귀 이후 고용유지 영향 요인 : 재발사건생존분석을 중심으로)

  • Han, Ki myung;Lee, Min ah
    • Korean Journal of Social Welfare Studies
    • /
    • v.48 no.4
    • /
    • pp.221-249
    • /
    • 2017
  • This study aims to investigate determinants that affect job retention of injured workers depending upon types of return to work in order to suggest define the intervention priority for those who returned to original works and for those who did not. After constructing explaining variables based on literature reviews, determinants were verified analyzing 1,292 people using Panel Study of Worker's Compensation Insurance(PSWCI) data. The job retention period turned out to be 46.6 months for those who returned to original work and 34.2 month for those who returned to new works. Injured workers who return to new works tend to have more unemployment experiences. As a result of Cox proportional regression analysis, the longer it takes to return to work, the longer both groups tend to retain after the accident. Age, recuperation period, health status, psycho-social rehabilitation, education and occupational training also affect on job retention probability for those who return to new work. Based upon the analyzed result, setting up an adequate duration for return-to-work, intervention for injured workers who experienced vulnerable working condition before the accident and continuous case management after return-to-work are suggested.

Understanding of Generative Artificial Intelligence Based on Textual Data and Discussion for Its Application in Science Education (텍스트 기반 생성형 인공지능의 이해와 과학교육에서의 활용에 대한 논의)

  • Hunkoog Jho
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.3
    • /
    • pp.307-319
    • /
    • 2023
  • This study aims to explain the key concepts and principles of text-based generative artificial intelligence (AI) that has been receiving increasing interest and utilization, focusing on its application in science education. It also highlights the potential and limitations of utilizing generative AI in science education, providing insights for its implementation and research aspects. Recent advancements in generative AI, predominantly based on transformer models consisting of encoders and decoders, have shown remarkable progress through optimization of reinforcement learning and reward models using human feedback, as well as understanding context. Particularly, it can perform various functions such as writing, summarizing, keyword extraction, evaluation, and feedback based on the ability to understand various user questions and intents. It also offers practical utility in diagnosing learners and structuring educational content based on provided examples by educators. However, it is necessary to examine the concerns regarding the limitations of generative AI, including the potential for conveying inaccurate facts or knowledge, bias resulting from overconfidence, and uncertainties regarding its impact on user attitudes or emotions. Moreover, the responses provided by generative AI are probabilistic based on response data from many individuals, which raises concerns about limiting insightful and innovative thinking that may offer different perspectives or ideas. In light of these considerations, this study provides practical suggestions for the positive utilization of AI in science education.

A Study on Reward-based Home-training App Users Using a Cash-cow User Prediction Model (캐시카우 사용자 예측 모델을 통한 리워드형 홈트레이닝 앱의 운영 및 관리 전략에 관한 연구)

  • Sanghwa Kim;Jinwook Choi;Byungwan Koh
    • Information Systems Review
    • /
    • v.23 no.4
    • /
    • pp.183-198
    • /
    • 2021
  • Due to the Covid-19 pandemic, the home-training app market is growing rapidly and numerous apps are entering the market. It is becoming more difficult for an app to secure the profitability. In this study, by analyzing actual user data of a reward-based home-training app, we propose a model that predicts cash-cow users of the app. Cash-cow users are the users who watch in-stream ads to watch training videos although they cannot earn any rewards by doing so. Thus, these users make profits for the app yet do not incur any costs. The results of this study show that the users who irregularly watch training videos are more likely to be cash-cow users than the users who regularly watch training videos. This result suggests that, paradoxically, for sustainable profitability, home-training apps may need to find a way to retain the users who watch training videos irregularly so that they can be satisfied with the service and continue use the apps.

Improved AR-FGS Coding Scheme for Scalable Video Coding (확장형 비디오 부호화(SVC)의 AR-FGS 기법에 대한 부호화 성능 개선 기법)

  • Seo, Kwang-Deok;Jung, Soon-Heung;Kim, Jin-Soo;Kim, Jae-Gon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12C
    • /
    • pp.1173-1183
    • /
    • 2006
  • In this paper, we propose an efficient method for improving visual quality of AR-FGS (Adaptive Reference FGS) which is adopted as a key scheme for SVC (Scalable Video Coding) or H.264 scalable extension. The standard FGS (Fine Granularity Scalability) adopts AR-FGS that introduces temporal prediction into FGS layer by using a high quality reference signal which is constructed by the weighted average between the base layer reconstructed imageand enhancement reference to improve the coding efficiency in the FGS layer. However, when the enhancement stream is truncated at certain bitstream position in transmission, the rest of the data of the FGS layer will not be available at the FGS decoder. Thus the most noticeable problem of using the enhancement layer in prediction is the degraded visual quality caused by drifting because of the mismatch between the reference frame used by the FGS encoder and that by the decoder. To solve this problem, we exploit the principle of cyclical block coding that is used to encode quantized transform coefficients in a cyclical manner in the FGS layer. Encoding block coefficients in a cyclical manner places 'higher-value' bits earlier in the bitstream. The quantized transform coefficients included in the ealry coding cycle of cyclical block coding have higher probability to be correctly received and decoded than the others included in the later cycle of the cyclical block coding. Therefore, we can minimize visual quality degradation caused by bitstream truncation by adjusting weighting factor to control the contribution of the bitstream produced in each coding cycle of cyclical block coding when constructing the enhancement layer reference frame. It is shown by simulations that the improved AR-FGS scheme outperforms the standard AR-FGS by about 1 dB in maximum in the reconstructed visual quality.