• Title/Summary/Keyword: 보상채널

Search Result 527, Processing Time 0.038 seconds

Phase Offset Correction using Early-Late Phase Compensation in Direct Conversion Receiver (직접 변환 수신기에서 Early-Late 위상 보상기를 사용한 위상 오차 보정)

  • Kim Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.3
    • /
    • pp.638-646
    • /
    • 2005
  • In recent wireless communications, direct conversion transceiver or If sampling SDR-based receivers have being designed as an alternative to conventional transceiver topologies. In direct conversion receiver a.chitectu.e, the 1.equency/phase offset between the RF input signal and the local oscillator signal is a major impairment factor even though the conventional AFC/APC compensates the service deterioration due to the offset. To rover the limited tracking range of the conventional method and effectively aid compensation scheme in terms of I/Q channel imbalances, the frequency/phase offset compensation in RF-front end signal stage is proposed in this paper. In RF-front end, the varying phase offset besides the fixed large frequency/phase offset are corrected by using early-late phase compensator. A more simple frequency and phase tacking function in digital signal processing stage of direct conversion receiver is effectively available by an ingenious frequency/phase offset tracking method in RF front-end stage.

Implement a ripple Compensation filter in wideband system using high order modulation (고차변조방식을 사용하는 광대역 시스템에서 평탄도(Ripple) 보상 필터 구현)

  • Yun, Byeong-Su;Park, Chang-Soo;Lee, Deok-Hwan;Kim, Jong-Hyoun;Lee, Jung-Yong;Jin, Seon-Hoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.470-473
    • /
    • 2018
  • Using High-order Modulation in wideband system is sensitive to change of wireless channel environment as well as changes in ripple characteristics that can occur when baseband signals pass through RF equipment. Therefore, it is necessary to design and RF tuning that minimizes ripple characteristics change, which is difficult to implement systematically and takes a long time. In this paper, we analyze the fixed ripple characteristics of the baseband signal distored through the RF transmitting and receiving equipment. And the function of compensating the compensation filter by the modem receiver is implemented in 256 TCM. Also, it is confirmed that SNR and received sensitivity are improved by applying a digital compensation filter in a channel with poor RF equipment ripple characteristics.

  • PDF

A Channel Estimation Technique for OFDM-CDMA Systems (OFDM-CDMA 시스템을 위한 채널 추정 기법)

  • 송동욱;박중후
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6A
    • /
    • pp.660-666
    • /
    • 2004
  • Transmitted data may be compensated by using estimated channel values that are obtained with pilot symbols in OFDM-CDMA systems. Generally, a USE (Minimum Mean-Squared Error) estimator using correlations between pilot symbols gives good results, but its structure is so complicated. Starting with a modification of PA (Pilot-Aided) algorithm using pilot symbols and PADD (Pilot-Aided Decision-Directed) algorithm using both pilot and data symbols, a new channel estimation algorithm with more simpler structure is proposed. The performance of this algorithm is evaluated with varying mobile speed in a Ralyleigh multipath fading environment through computer simulations. The simulation results show that the proposed channel estimation algorithm outperforms a conventional PA algorithm.

An Equalization Technique for OFDM Systems in Time-Variant Multipath Channels (시변 다중경로 페이딩 채널에서의 OFDM 등화기법)

  • Jeon, Won-Gi;Chang, Kyung-Hi;Cho, Yong-Soo
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.6
    • /
    • pp.9-18
    • /
    • 1998
  • In this paper, an equalization technique for OFDM(orthogonal frequency division multiplexing) in a time-variant multipath fading environment is described. A loss of subchannel orthogonality due to time-varying multipath fading channels leads to interchannel interference (ICI) which increases the error floor in proportion to Doppler frequency. A simple frequency-domain equalizer which can compensate the effect of ICI caused by time variation of multipath fading channel is proposed by modifying the previous frequency-domain equalization technique with taking into account only the ICI terms significantly affecting the error performance. The effectiveness of the proposed approach is demonstrated via computer simulation by applying it to OFDM systems when the multipath fading channel is slowly time variant.

  • PDF

An Interference Canceller-based Digital On-Channel Repeater to Improve Feedback Channel Estimation and RFP Performance (귀환 채널 추정 및 RFP 성능을 개선한 간섭 제거 기반의 동일 채널 중계기)

  • Choi, Soocheol;Cho, Kiryang
    • Journal of Broadcast Engineering
    • /
    • v.21 no.2
    • /
    • pp.261-267
    • /
    • 2016
  • In this paper, Method for the phase distortion compensation timing offset and DC eliminator for the pilot component estimation and removal, transmitted and received signal correlation in the delay scheme DAB interference cancellation based on the same channel for using for estimating the feedback signal based on a between for removal for the timing offset compensation It proposes a repeater. This was applied to the ATSC system. The on-channel repeater of the proposed interference cancellation based on the interference removing capability is improved in interference signal is 20dB greater than the primary transmission signal environment via the return channel estimation and improve performance RFP. Accordingly, it was confirmed by simulation that good signal is sent out with the improvement of the ability of the repeater.

Performance Analysis of Underwater Communication Channel Using LDPC Codes in the MISO Channel (LDPC 부호를 이용한 MISO 채널에서 수중통신 채널 성능 분석)

  • Park, Tae-Doo;Kim, Min-Hyun;Lim, Byeong-Su;Jung, Ji-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7B
    • /
    • pp.878-885
    • /
    • 2011
  • Due to reflect at surface of the water and limit bandwidth, it is difficult to design underwater acoustic communication systems with high-reliability and high transmission rate. Therefore the trends of underwater communication is transformed from single sensor to multiple sensor studies. However, underwater MIMO communication techniques have a high correlation value between multiple sensors on transmitters and receivers in underwater environments, it is difficult to expect space diversity gain on muli-path channels. Therefore, this paper proposed the MISO communications system with two transmit sensors and single receiver sensor, and analyzed its performance using the LDPC codes and channel compensation algorithm.

A Simultaneous Compensation for the CPE and ICI in the OFDM System (OFDM 시스템에서 CPE와 ICI의 동시보상 방법)

  • Li Ying-Shan;Ryu Heung-Gyoon;Jeong Young-Ho;Hahm Young-Kown
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.12 s.91
    • /
    • pp.1152-1160
    • /
    • 2004
  • OFDM technique was adopted as the standard of IEEE 802.1 la and it has been widely used for wireless LAN, European DVB/DAB system, Korean DMB system. In the standard of IEEE 802.11a the data packet is composed of two parts, preamble and data. Preamble is composed of short pilots and long pilots, which are used for synchronization and estimation of frequency offset and channel. We can also compensate phase noise effect in the transceiver by using above pilots. The phase noise is more complicate than frequency offset and seriously affects system performance. In this paper, we newly propose CPE and ICI simultaneous compensation method to compensate phase noise generated by transceiver oscillator and compare with previous studies. As results, phase noise effect can be significantly compensated by CPE cancellation method, PNS algorithm and our proposed CPE and ICI compensation method. Especially, the proposed CPE and ICI compensation method can achieve the best BER performance compared with original OFDM, CPE cancellation method and PNS algorithm.

Performance of Time-averaging Channel Estimator for OFDM System of Terrestrial Broadcasting Channel (지상파 방송 채널에서 OFDM 시스템의 시간 평균 채널 추정기의 성능)

  • 문재경;오길남;박재홍;하영호;김수중
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.1
    • /
    • pp.44-53
    • /
    • 1999
  • In this paper, we propose a pilot based time-averaging channel estimation method and analyze error performances for efficient transmission of OFDM(Orthogonal Frequency Division Multiplexing) in multipath fading environment. Frequency domain channel estimations have been used in OFDM systems to compensate signal distortions due to fading on each subcarrier. The frequency domain estimation scheme uses scattered pilot to estimate channel response by simple interpolation. This implies that the estimated channel response includes signal distortions due to the noise. In this paper, we propose time-averaged channel estimation method to remove the distortion by noise. The proposed scheme can effectively remove noise components by taking time-average of the estimated channel response after estimating frequency domain channel. The computer simulations were performed to evaluate the performance of the proposed channel estimator. For the Rician channel, we compared the performance of the proposed method to that of a conventional one using channel estimation by gaussian interpolation when SER(Symbol Error Rate) = $10^{-4}$, and compared to perfect channel estimation case. The proposed method showed differences of 0.07 dB, 0.6 dB compared to perfect channel estimation and improvements of 1.7 dB, 1.9 dB for 16 QAM, 64 QAM respectively compared to conventional method.

  • PDF

The Study on The Application of QAM-OFDM Scheme for Nonlinear Satellite Channel (비선형 위성 채널에서 QAM-OFDM 방식의 적용에 관한 연구)

  • Lee, Hae-Seon
    • 전자공학회논문지 IE
    • /
    • v.45 no.1
    • /
    • pp.44-49
    • /
    • 2008
  • In this paper, the performance for the non-linear satellite channel including the characteristics of group delay and gain ripple of transponder is analyzed with multi-level QAM-OFDM schemes. Comparing the BER performances between general OFDM and CI(Carrier Interferometry)-OFDM for various QAM schemes, the degree of performance improvement is presented in AWGN environments for specified nonlinear characteristics. The simulations are performed with the 36MHz bandwidth of transponder channel and 120Mbps transmission rate for QPSK, 8QAM, 16QAM, 32QAM, 64QAM schemes between normal and worst case condition. It is shown that the improvement measure by the CI-OFDM for the group delay of channel and nonlinear characteristic of HPA outperforms that for the gain ripple in the case of higher level QAM scheme in normal condition. And the simulation results show that the additional techniques like the channel coding and compensation scheme against the nonlinear characteristic are required for 32QAM and higher level QAM in worst case condition.

Sparse Adaptive Equalizer for ATSC DTV in Fast Fading Channels (고속페이딩 채널 극복을 위한 ATSC DTV용 스파스 적응 등화기)

  • Heo No-Ik;Oh Hae-Sock;Han Dong Seog
    • Journal of Broadcast Engineering
    • /
    • v.10 no.1 s.26
    • /
    • pp.4-13
    • /
    • 2005
  • An equalization algorithm is proposed to guarantee a stable performance in fast fading channels for digital television (DTV) systems from the advanced television system committee (ATSC) standard. In channels with high Doppler shifts, the conventional equalization algorithm shows severe performance degradation. Although the conventional equalizer compensates poor channel conditions to some degree, long filter taps required to overcome long delay profiles are not suitable for fast fading channels. The Proposed sparse equalization algorithm is robust to the multipaths with long delay Profiles as well as fast fading by utilizing channel estimation and equalizer initialization. It can compensate fast fading channels with high Doppler shifts using a filter tap selection technique as well as variable step-sizes. Under the ATSC test channels, the proposed algorithm is analyzed and compared with the conventional equalizer. Although the proposed algorithm uses small number of filter taps compared to the conventional equalizer, it is stable and has the advantages of fast convergence and channel tracking.