• Title/Summary/Keyword: 보강지반

Search Result 1,418, Processing Time 0.023 seconds

An Experimental Study on Frictional Behavior Between Soil and Reinforcements (흙과 보강재 사이의 마찰거동에 관한 실험적 연구)

  • 유남재
    • Geotechnical Engineering
    • /
    • v.5 no.3
    • /
    • pp.51-62
    • /
    • 1989
  • Prior to the centrifugal model experiments of reinforced earth retaining walls, frictional tests were performed to investigate the frictional behavior between the sand and the reinforcements. Coefficient of friction between the soil and the reinforcements was evaluated using different reinforcements, their lengths and testing methods. Two different testing methods, the direct shear and the pull-out tests, were adopted and their testing results were compared to determine which. method better represented the actual behavior In the field.

  • PDF

Improved Effects of Reinforced Wall with Types of Connection Methods (보강재 연결 유.무에 따른 보강토옹벽의 보강효과)

  • 신은철;최찬용
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.67-76
    • /
    • 1998
  • The commonly used method to secure the stability of reinforced retaining structure is the reinfocement of backfill with connection attached or unattached to the geogrid type wall. Laboratory model tests for both cartes were conducted to investigate the effectiveness of geogridreinforcement, length of reinforcement inclusion, failure envelop, and the relationships between the face wall displacement and vertical settlement. The bearing capacity of each case was also determined. According to the model test results, geogrid-reinforced rigid wall is very effective for increasing the bearing capacity and reducing the displacement of retaining wall. The observed sliding line of model test is similar to the theoretical one.

  • PDF

Settlement Reduction Effect of the Geogrid Reinforced Stone Column System (고강도 지오그리드로 보강된 Stone Column 공법의 침하감소효과)

  • Park, Sis-Am;Cho, Sung-Han;Yoo, Chung-Sik;Lee, Dae-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.1
    • /
    • pp.15-23
    • /
    • 2006
  • Sand Compaction Pile and Stone Column method have been used in widely during several decades as a technique to reinforce soft soils and increasing ultimate bearing capacity, accelerate consolidation settlement of the foundation ground. Stone column method, making a compaction pile using crushed stone, is a soft ground improvement method. However, stone column method is difficult to apply to the ground which is not mobilized enough lateral confine pressure because no bulging failure resistance. Hence, in present study, development the geogrid reinforced stone column system for settlement reduction and wide range of application of stone columns. To develop this system, triaxial compression tests were conducted for evaluation which is about behavior characteristics of stone column on replacement rate and confine pressure. Then, 3-dimensional numerical analysis were evaluated for application of the GRSC (geogrid reinforced stone column) system as evaluate behavior characteristics and settlement reduction effect of stone column reinforced by geogrid on types and reinforcing depth change of geogrid.

  • PDF

A Study on the Open Cut Restoration of Underground Cavity Using Concrete Mat (콘크리트매트를 이용한 개착식 지반공동 복구방법에 관한 연구)

  • Park, Jeong-Jun;Shin, Heesoo;Chung, Yoonseok;You, Seung-Kyong;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.1
    • /
    • pp.55-65
    • /
    • 2019
  • This paper describes results of experimental and numerical analyses, in order to analyze a reinforcement effect of concrete mat on open cut restoration of underground cavity. The plate loading tests were conducted to evaluate a reinforcement effect of concrete mat, at reinforcement depths from the ground surface of 10 cm, 20 cm, and 30 cm. The result showed that the reduction ratio of stress (earth pressure) was about 60% at all reinforcement depth. The reinforcement effect considering ground surface settlement and reduction ratio of stress based on laboratory tests and numerical analysis was significant, at reinforcement depths from the ground surface of 10 cm~20 cm. LFWD test results showed that subgrade modulus was the largest when concrete mat was installed 20 cm below ground surface. Therefore, it is effective to reinforce concrete mat within 20 cm from the surface, when the underground cavity due to damage of underground utilities was formed in the height direction to the bottom of the pavement layer.

A Study on the Effect of Underground Openings on the Stability of Surface Structures Using Scaled Model Tests (지하 채굴적이 지표 구조물의 안정성에 미치는 영향에 관한 모형실험 연구)

  • 김종우;전석원;서영호
    • Tunnel and Underground Space
    • /
    • v.14 no.1
    • /
    • pp.43-53
    • /
    • 2004
  • In this study, scaled-model tests were performed to investigate the effect of underground openings on the stability of surface structure around the abandoned coal mine areas. Four types of test models which had respectively different depths of openings and different ground reinforcement conditions were introduced, where the modelling materials were the mixture of sand, plaster and water. The model with deep openings were turned out more stable to the structure than the model with shallow ones, because the crack-initiating pressure of the former was 2.5 times as much as that of the latter. The models with ground reinforcement were also fumed out more stable than the model without reinforcement, because the crack-initiating pressure of the former was 2.4 times as much as that of the latter. Subsidence profiles were analysed to find the characteristics of slope and curvature, and the model with large reinforcement were turned out the most stable.

Optimization of Reinforcement Effect of Large-diameter Drilled Deep Foundation (보강형 현장타설말뚝의 최적보강효과 분석)

  • 남대승;김수일;이준환;윤경식
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.207-216
    • /
    • 2003
  • Drilled deep foundations of large diameter are often used for foundations of transmission towers. As tower structures become larger in modern society, there is a need of more efficient and economical design of large-diameter drilled deep foundations. Reinforced drilled deep foundations are popular in Japan for the foundation of tower structures. Stiffeners attached to the shaft of the foundation are used to increase the shaft resistance. This study aims at analyzing the effect of reinforcement with large-diameter drilled deep foundations based on numerical analysis of the representative soil and rock conditions in Korea. The numerical analyses are conducted to analyze the reinforcement effect of various stiffener conditions of number, inclination, location and length. Regarding to number of stiffeners, the effect of reinforcement for weathered and soft rocks increases proportionally as the number of stiffeners increases. For weathered soil, however, the effect of reinforcement increases at a lower rate. The effect of stiffener location is nearly negligible for axially loading cases, while it is significant for laterally loading cases. For the laterally loading cases, upper locations of stiffener give greater reinforcement effect than that of lower location. For stiffener inclinations of axial loading cases, a stiffener inclination equal to 60$^{\circ}$ gives the greatest reinforcement effect.

A Study on Compressive Force of Reinforced Grout at the Fixed head of Compression Anchor (압축형 앵커의 선단정착부 그라우트 보강에 따른 산정에 관한 연구)

  • 임종철;이태형;홍석우
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.5
    • /
    • pp.213-226
    • /
    • 2000
  • 지반 앵커(이하에서는 "앵커"로 칭한다)는 앵커두부, 자유부, 정착부로 나누어져 있다. 현재 주로 사용되고 있는 앵커는 지반과 앵커체 표면의 마찰저항력에 의해 지지하는 마찰방식이며, 앵커체에 발생하는 응력에 따라 크게 인장형과 압축형 앵커로 나누어진다. 그런데, 현재까지 이들 앵커의 설계 및 극한하중의 결정은 대부분이 인장형 앵커에 대한 것으로서, 긴장시 압축형 앵커의 선단정착부의 응력집중으로 이한 그라우트 압축저항에 대해서는 명확히 연구되어져 있지 않다. 본 연구에서는, 현장과 비슷한 조건에서 실내시험을 실시하여 선잔 장착부 그라우트의 보강형식에 따른 압축거동특성과 보강효과, 지반의 구속(정지와 포아송 구속)을 고려한 압축형 앵커의 선단 정착부 그라우트 압축저항력 산정식을 제안하였다.정식을 제안하였다.

  • PDF

The Reinforcement Effect of Woven Geotextiles for Railway Roadbed High-Embankment on Soft Ground by the Limit Equilibrium Analysis (한계평형해석에 의한 연약지반 위의 철도노반 고성토를 위한 직포 보강 효과)

  • Kim, You-Seong;Choi, Jae-Seon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.4
    • /
    • pp.27-37
    • /
    • 2010
  • Woven geotextiles (polyester mats) reinforcement is generally used to improve traffic ability, bearing capacity, and slope stability for embankment construction on soft ground. Cases of two high-strength woven geotextiles reinforcement layers are introduced in the present paper, which has been successfully constructed for rail road embankment on soft ground. According to the case results based on the limit equilibrium analyses of slope stability, the two high-strength woven geotextiles reinforcement layers on the soft ground can substantially increase the stability of the embankment by about 25%, improve the safety factor from 0.91 to 1.14, and significantly reduce the embankment construction duration at least 2 months. Therefore, the application of high-strength woven geotextiles is found to be useful for in-situ cases having the lack of construction duration and stability, as a soft ground improvement.

  • PDF

Experimental Study on the Reinforcement Effect of Geogrid in Soft Ground Improvement (연약지반 개량시 지오그리드 보강효과에 관한 실험적 연구)

  • Ham, Hyeon-Su;Lee, Sang Duk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.2
    • /
    • pp.1-7
    • /
    • 2018
  • The number of construction of roads and railroads in soft ground such as coastal areas and wetlands is getting increased. For this reason cases that soft ground improvement is applied are increasing. In general, many ground improvement methods consider only the working conditions at the time or only economy. But if the working condition and economy are taken into consideration together, the number of applicable construction method gets limited. In such a case, a ground improvement method using both the surface layer portion and the deep layer portion is applied. But the basic research on this is still insufficient in practice. Therefore, in this study the reinforcement effect of geogrid was investigated by carrying out the model test realizing the case in which soft surface ground improvement and depth improvement are simultaneously applied. And it was intened to understand the effect of the thickness of surface layer, the diameter and length of the improvement body on the reinforcement effect of geogrid. The result showed that the effect of the surface layer thickness is greater than the effect of the deep layer diameter. Moreover, when the surface layer is reinforced with a geogrid, the strength of the surface layer part is enhanced and this effect of a geogrid reinforcement caused the reduction of surface settlement.