• Title/Summary/Keyword: 보강성토

Search Result 101, Processing Time 0.027 seconds

Reinforced Effect of Staple Fiber for Soil - Waste Stone Sludge (폐석분 혼합토의 단섬유 보강 효과)

  • Choi, Min-Kyu;Park, Beum-Sic;Kim, Young-Muk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.8
    • /
    • pp.45-55
    • /
    • 2012
  • This study is about the application of waste stone sludge as fill material. Waste stone sludge, weathered granite soil, and the mixture of the former and the latter strengthened with staple fiber are experimentally analyzed for measuring strength property. When staple fiber was mixed with waste stone sludge, weathered granite soil, and the mixture, there was a nearly linear relationship between the amount of the staple fiber and the increasing ratio of unconfined compressive strength. The increasing ratio of unconfined compressive strength was the largest in weathered granite soil. The increasing ratio of unconfined compressive strength of the mixture was similar to that of waste stone sludge. In the case of the mixture of weathered granite soil and waste stone sludge, an internal friction angle tended to increases rely on increasement of staple fiber content, whereas the change of cohesion was small. An internal friction angle was increased by 21 percent when staple fiber content is 0.75 percent. Comparing with weathered granite soil or waste stone sludge, strength parameters of the mixture were increased relatively. Thus strengthening effect of staple fiber in the mixture is expected.

Finite Element Modeling of Geogrid-Encased Stone Column in Soft Ground (연약지반에 시공된 지오그리드 보강 쇄석기둥 공법의 유한요소모델링)

  • Yoo, Chung-Sik;Song, Ah-Ran;Kim, Sun-Bin;Lee, Dae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.133-150
    • /
    • 2007
  • This paper presents the results of a research performed to investigate the finite element modeling approach for GESC (Geogrid-Encased Stone Column) method in soft ground within the framework of stress-pore pressure coupled analysis. GESC reinforcement mechanism and construction method was first examined and model verification of stone column on the results of FE analysis was identified. The results indicate that the 3D FE analysis and membrane elements play the most important role in the soft groung using GESC. Based on the results, a modeling method was suggested for stress-pore pressure coupled finite element modelling of GESC in soft ground.

Characteristics of Soils Reinforced by FPF(Fibrillated Polypropylene Fiber) (FPF(Fibrillated Polypropylene Fiber)보강 성토재료의 강도 특성에 관한 연구)

  • 김낙경;박종식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.433-440
    • /
    • 2001
  • This study was to analyze characteristics of soils reinforced by FPF(Fibrillated Polypropylene Fiber). Laboratory test, model test and field tests were performed on soils reinforced by fibers, to evaluate the shear strength characteristics. For the silty sand, clayey sand and silty clay, the influence of fiber shape, fiber length and fiber content were evaluated from compaction test, direct shear test, uniaxial test, california bearing ratio(CBR) test. Fibrillated type fiber, 5cm long with a content of 0.5% shows 5∼30% increase of friction angle and 7∼55 percent increase of CBR value.

  • PDF

Effect of the Settlement Reduction to each Geosynthetic Reinforced Pile Supported Embankments Design Condition (토목섬유보강 성토지지말뚝의 설계조건별 침하억제 효과)

  • Lee, Il-Wha;Lee, Sung-Jin;Lee, Su-Hyung;Moon, In-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1519-1524
    • /
    • 2009
  • Construction of high-speed concrete track embankments over soft ground needs many of the ground improvement techniques. Drains, surcharge loading, and geosynthetic reinforcement, have all been used to solve the settlement and embankment stability issues associated with construction on soft soils. However, when time constraints are critical to the success of the project, another measures should be considered. Especially, since the design criteria of residual settlement is limited as 30mm for concrete track embankment, it is very difficult to satisfy this allowable settlement by using the former construction method. Pile net method consist of vertical columns that are designed to transfer the load of the embankment through the soft compressible soil layer to a firm foundation and one or more layers of geosynthetic reinforcement placed between the top of the columns and the bottom of the embankment. In this paper, three cases with different embankment height and number of geosynthetic reinforcement, were studied through FEM analysis for efficient use of pile net method.

  • PDF

Study on Levee Seepage Safety According to Change of Ground Elevation (제내지와 제외지의 표고변화에 따른 제방침투 안정성 연구)

  • Kang, Taeun;An, Hyunuk;Yoon, Euihyeok;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.252-252
    • /
    • 2015
  • 우리나라에서는 대하천정비사업을 통해 주요 국가하천마다 보와 제방을 신설 및 보축하여 홍수의 방어 및 예방에 힘을 기울이고 있으며, 근래에는 이러한 정비사업이 완료되어 가고 있는 상황이다. 제방에 대한 정비사업의 내용은 보축 및 신설이 주를 이루나, 제내지의 성토와 제외지의 보강 및 저수로의 준설 등도 함께 수행되었다. 이러한 정비사업의 영향으로 지하수 및 하천의 흐름양상은 정비사업 전과는 다르게 변화 될 것으로 추정되며, 이는 제방 안정성에 영향을 줄 수 있는 중요한 문제로 판단된다. 따라서, 이와 같은 지하수 및 하천흐름의 변화양상이 제방의 안정성에 얼마나 영향을 미칠 수 있는지 정량적으로 분석할 필요가 있을 것으로 보인다. 특히, 대하천정비사업으로 지반누수를 방지하기 위한 제내지 성토나 퇴사제거를 위한 하천준설 등이 수행되면서 제방의 외적인 환경들이 많이 변하게 되었으나 이에 대한 정량적인 연구들이 거의 수행되지 않은 것으로 판단된다. 따라서, 본 연구에서는 낙동강과 회천 합류부에 위치한 율지제를 대상으로 이곳에 설치된 간극수압계의 데이터와 2차원 침투해석 프로그램인 SEEP/W를 이용하여 제내지와 제외지 표고변화에 따른 파이핑 안정성을 분석하였다. 그 결과 제내지 표고가 상승하면 파이핑 안전율이 증가하고 표고가 하강하면 안전율은 감소하는 것으로 나타났다. 한편, 제외지의 표고변화는 제방안정성에 거의 영향을 주지 않으며 오히려 하천수위의 영향을 지배적으로 받는 것으로 판단된다. 따라서, 제방안정성을 확보하기 위해서는 기초지반의 경우, 제내지측을 상승시키고 하천수위를 하강하는 것이 효과적일 것으로 판단된다.

  • PDF

The Immediate Settlement Estimation of the Improved Soft Ground Using Bamboo Mats (대나무매트로 보강된 연약지반의 즉시침하량 추정에 관한 고찰)

  • Kim, Woo-Jin;Kim, Yoon-Ha;Kang, Jin-Tae;Choi, Yong-Hwan;Kim, Jong-Ryeol
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.55-64
    • /
    • 2008
  • When the structure is constructed on the soft ground, the embankment is settleed into the soft ground. At this time, the settlement of the structure is needed to predict. We are using bamboo mats construction only as a way of test construction. Under this circumstance, using the equation of Janbu and Perloff, we calculated the settlement, and analyzed the problem, suggesting proper theoretical equations showing the settlement of soft ground using bamboo mat. Using this equations the settlement was calculated and compared with the result of FEM. The result of the application was very close to the numerical value and the trend of theoretical equations. Using the existing equations, the settlement in Janbu's and Perloff's methods were calculated to be 40% of the actual settlement.

Settlement Behavior of Soft Ground Reinforced by Stone Columns (쇄석말뚝으로 보강된 연약지반의 침하거동)

  • Shin, Bang-Woong;Bae, Woo-Seok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.1 no.1
    • /
    • pp.27-33
    • /
    • 2000
  • Stone columns is ground improvement method which is composed of compacted gravel or crushed stone inserted into the soft ground consisting of loose sand and clay by replacement method. Generally stone columns are constructed in silty clay, above 70% replacement rate for increasing the bearing capacity and shear strength. Low replacement stone columns method is limited below 30% at replacement rate-premising strength increase of clay ground is estimated efficiently. This study, laboratory model tests were conducted to investigate the consolidation drainage promotion and shear strength increase effect in soft ground with replacement rate by stone columns. The settlement reduction effect and settlement reduction coefficients increase with increasing the replacement rate in composite ground. The results of model tests indicate that consolidation promotion effect is proved. The increasing strength of composite ground was verified by vane shear tests.

  • PDF

Application of Stepped Isothermal Methods to Lifetime Prediction of Geogrids (SIM을 적용한 성토보강용 지오그리드의 수명예측)

  • Koo, Hyun-Jin;Kim, You-Kyum;Kim, Dong-Whan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.1
    • /
    • pp.3-6
    • /
    • 2005
  • The failure of geogrids can be defined as an excessive creep strain which causes the collapse of slopes and embankments. In this study, the lifetime of knitted polyester geogrids was predicted by using SIM(Stepped Isothermal Methods using TTS principal) and statistical data analysis techniques. The results indicate that the creep strain was 8.74, 8.79, 8.80% with 2.16~2.20% of CV% at 75, 100, 114 years, respectively and the creep strain reaches 9.3% after 100 years of usage at $27^{\circ}C$ which meets the required lifetime(creep strain less than 10% after 100 years of usage) in the fields. The SIM method is shown to be effective in reduction of uncertainty associated with inherent variability of multi-specimen tests and shorter test times than conventional TTS(Time-Temperature Superposition).

  • PDF

Seismic Behaviour of Eco-BELT System and Seismic Effectiveness of T-shaped Deadman Considering Soil-Structure Interface Based on Dynamic Numerical Analysis (흙-구조물 접촉면을 고려한 친환경 옹벽 구조물의 지진시 거동 및 T형 후방지지물의 보강효과에 대한 동해석 분석연구)

  • Kwak, Chang-Won;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.8
    • /
    • pp.37-49
    • /
    • 2021
  • A retaining wall system is widely constructed civil structure to maximize the effectiveness of practical use of the land. Recently, the technology which is more eco-friendly and owns seismic stability of the retaining wall system becomes important. In this study, an Eco-BELT system using natural rocks as the front wall is introduced and the seismic characteristics of the Eco-BELT system are analyzed based on 2 and 3 dimensional numerical analysis. The soil-structure interface comprises between backfill soil and natural rocks are considered. The relative density is mainly considered to influence the seismic behavior of Eco-BELT system, and T-shaped deadman is also considered to judge the increase of seismic stability. As a result, lateral displacement of the wall decreases 29.5% in maximum under 90% of relative density and decreases 21.2 to 21.9% with T-shaped deadman, therefore, the seismic effectiveness of T-shaped deadman and increasing relative density of backfill are verified by numerical analysis.

Reinforcement Effect of Rapid Hardening Composite Mat for Protect Railway Slope in Operation (운영중인 철도비탈면 보호를 위한 초속경 복합매트 보강 효과)

  • Kang, Tae-Hee;Jung, Hyuk-Sang;Kim, Jin-Hwan;Back, In-Chul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.151-163
    • /
    • 2021
  • This paper is dealt with railway slope stability for slope reinforcement using a geosynthetic concrete composite mat(GCCM). Recently, according to a change in weather caused by global warming, train operation has been restricted by the loss of backfill slope at the roadbed, which is consists of gravel, due to typhoons and heavy rainfall. In addition, the amount of damage is getting more significant than the cost of restoration, and the safety of workers is worried. In order to improve this limitation, a slope stability analysis was applied with a rapid hardening composite mat so that it can quickly secure a construction surface with increased workability and work stability and reduce maintenance costs by preventing re-loss in case of heavy rain and fundamentally blocking vegetation. As a result of the analysis, it was confirmed that the increase in safety factor was confirmed when the rapid harding composite mat was applied.