• 제목/요약/키워드: 병렬 응용프로그램

검색결과 162건 처리시간 0.018초

빅데이터 플랫폼을 위한 SON알고리즘 기반의 효과적인 연관 룰 마이닝 (Efficient Association Rule Mining based SON Algorithm for a Bigdata Platform)

  • 뉘엔양쯔엉;뉘엔반퀴엣;뉘엔신응억;김경백
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권8호
    • /
    • pp.1593-1601
    • /
    • 2017
  • 빅데이터 플랫폼에서, 연관 룰 마이닝 응용프로그램은 여러 가치를 창출할 수 있다. 예를 들어, 농업 빅데이터 플랫폼에서 농가 소득을 높일 수 있는 농작물들을 농업인들에게 추천할 수 있다. 이 연관 룰 마이닝의 주요 절차는 빈발 아이템셋 마이닝으로, 이는 동시에 나타나는 아이템의 셋을 찾는 작업이다. Apriori를 비롯한 이전 연구에서는 대규모의 가능한 아이템 셋에 의한 메모리 오버로드의 이유로 만족할 만한 성능을 보일 수 없었다. 이를 개선하고자, 아이템 셋을 작은 크기로 분할하여 순차적으로 계산하도록 하는 SON 알고리즘이 제안되었다. 하지만, 단일 머신에서 SON 알고리즘을 돌릴 경우 많은 시간이 소요된다. 이 논문에서는 하둡기반의 빅데이터 플랫폼에서 SON 알고리즘 병렬처리 방식을 이용한 연관룰 탐색 기법을 소개한다. 연관 룰 마이닝을 위한 전처리, SON 알고리즘 기반 빈발 아이템셋 마이닝, 그리고 연관룰 검출 절차를 Hadoop기반의 빅데이터 플랫폼에 구현하였다. 실제 데이터를 활용한 실험을 통해 제안된 연관 룰 마이닝 기법은 Brute Force 기법의 성능을 압도하는 것을 확인하였다.

워크 그룹 구성 변화에 따른 GPU 기반 천 시뮬레이션의 성능 분석 (The Performance Analysis of GPU-based Cloth simulation according to the Change of Work Group Configuration)

  • 최영환;홍민;이승현;최유주
    • 인터넷정보학회논문지
    • /
    • 제18권3호
    • /
    • pp.29-36
    • /
    • 2017
  • 오늘날 3D 다이내믹 시뮬레이션은 많은 산업들과 밀접한 관계를 가지고 있다. 과거에는 자동차 충돌, 건축물 분야에서 주로 사용되었으나 최근에는 영화나 게임 분야에도 물리 시뮬레이션이 중요한 역할을 하고 있다. 일반적으로 3D 물체를 사실적으로 표현하기 위해서는 많은 수학적 연산이 필요하기 때문에 기존의 CPU 기반의 응용 프로그램들은 이러한 많은 연산량을 실시간으로 처리하는데 무리가 있다. 최근 그래픽 하드웨어의 발전과 아키텍쳐의 개선으로 GPU는 기존의 렌더링 연산뿐만 아니라 범용 목적의 연산 기능을 제공하고 있고 이러한 GPU를 활용하는 연구가 활발히 진행되고 있다. 본 논문에서는 GPU를 이용한 천 시뮬레이션 수행시 수행 성능을 최적화하기 위하여, GPU 셰이더의 실행 환경 변화에 따른 천 시뮬레이션 알고리즘의 수행 성능의 변화를 분석하였다. GPU를 이용한 천 시뮬레이션은 GLSL 4.3의 Compute shader를 사용하여 스프링 중심 알고리즘과 노드 중심 알고리즘을 PC기반으로 구현하였고, GLSL Compute shader의 다양한 워크 그룹 (Work Group) 크기와 차원 분배에 따른 연산 속도의 변화를 비교 분석하였다. 실험은 5,000 프레임까지 10회 반복 수행하여 FPS(Frame Per Second)의 평균을 구하여 진행하였다. 실행결과, 노드 중심의 알고리즘이 오히려 스프링 중심의 알고리즘 보다 빠른 수행속도를 보여 주었다.