• Title/Summary/Keyword: 병렬형 공작기계

Search Result 13, Processing Time 0.021 seconds

Development of Kinematic Calibration System for a Parallel-typed Machining Center Tool (병렬기구형 공작기계의 보정 시스템 개발)

  • Kim, Tae-Sung;Park, Kun-Woo;Yoon, Tae-Sung;Lee, Min-Ki
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.521-526
    • /
    • 2001
  • This research develops a low-cost and high accurate kinematic calibration method for a parallel typed machining center tool. A planar table is used for a mechanical fixture restricting the platform to place at the constrained pose and a low-cost and high accurate digital indicator is employed for a device checking if the constrained movement is satisfied within the established range. The kinematic parameters calibrated with respect to a single plane aren't influenced from the misalignment of the plane. A parameter observability is successfully obtained even through one planar constraint, which guarantees that the kinematic parameters is estimated by minimizing the cost function.

  • PDF

A Study on the Error Compensation of Three-DOF Translational Parallel Manipulator (3자유도 병렬기구의 위치오차 보정기술에 관한 연구)

  • 신욱진;조남규
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.44-52
    • /
    • 2004
  • This paper proposed a error compensation methodology for three-DOF translational parallel manipulator. The proposed method uses CMM (coordinate measuring machine) as metrology equipment to measure the position of end-effector. To identify the transform relationships between the coordinate system of the parallel manipulator and the CMM coordinate system, a new coordinate referencing (or coordinate system identification) technique is presented. By using this technique, accurate coordinate transformation relationships are efficiently established. According to these coordinate transformation relationships, an equation to calculate the compensating error components at any arbitrary position of the end-effector is derived. In this paper, Monte Carlo simulation method is applied to simulate the compensation process. Through the simulation results, the proposed error compensation method proves its effectiveness and feasibility.

Study on Kinematic Calibration of a Parallel-typed Machining Center Tool (병렬기구형 공작기졔의 기구학적 보정에 관한 연구)

  • Lee, Min-Ki;Kim, Tae-Sung;Park, Kun-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2237-2244
    • /
    • 2002
  • This research develops a low-cost and high accuracy kinematic calibration method based on the following principles: 1) the platform locations are accurately measured by a constrained movement to inspect a calibration target; 2) the constrained movement is chosen to guarantee the parameter observability; 3) the mechanical fixture to constrain the movement and the sensor to check the constrained movement are implemented by low-cost and high-accuracy devices; 4) the calibration is easily done at an industrial environment. The kinematic parameters calibrated with respect to a single plane aren't influenced due to the misalignment of the plane. A parameter observability is successfully obtained even through one planar constraint, which guarantees that all kinematic parameters are estimated by minimizing the cost function.