임베디드 시스템의 하드웨어 구성요소들에 대한 성능 고도화가 요구됨에 따라 이에 탑재될 소프트웨어의 개발 방법도 영향을 받고 있다. 특히 MPSoC와 같은 고가의 하드웨어 아키텍처에서는 효율적인 자원의 사용 및 성능의 향상을 위해 소프트웨어 측면에서의 고려가 필수적으로 요구된다. 따라서 본 연구에서는 임베디드 소프트웨어 개발과정에서 멀티프로세서 기반의 하드웨어 아키텍처를 고려하는 소프트웨어 태스크의 분할기법을 제시한다. 제시하는 기법은 UML 기반의 소프트웨어 모델을 CBCFG (Constraints-Based Control Flow Graph)로 변환하고, 이를 병렬성과 데이터 의존성을 고려한 소프트웨어 컴포넌트로 분할하는 기법이다. 이러한 기법은 임베디드 소프트웨어의 플랫폼 의존적인 모델 개발과 태스크 성능 예측 등을 위한 자료로 활용할 수 있다.
본 연구에서는 Quad FHD의 고해상도 동영상을 실시간 처리하는 고성능 H.264/AVC 디블로킹필터를 설계하였다. 연산처리 성능을 향상시키기 위해 라인에지필터 16개를 4개의 블록에지필터로 병렬 설계하였으며, 내부버퍼 크기와 연산 사이클을 줄이기 위해 H.264/AVC 디블로킹 필터 순서를 4단 병렬 지그재그 스캔 순서로 스케줄링하였다. 그리고 블록에지필터 연산 간 1사이클의 지연시간을 두어 데이터 충돌을 방지하고, 블록에지필터 간 내부버퍼를 인터리빙 버퍼로 구현하여 내부버퍼 크기를 줄였다. 0.18um 공정에서 시뮬레이션한 결과, 최대 동작주파수가 90MHz이며, 게이트 수는 140.16 Kgates이다. 제안하는 H.264/AVC 디블로킹필터는 동작주파수 90MHz에서 Quad FHD급 동영상($3840{\times}2160$)을 초당 113.17프레임으로 실시간 처리가 가능한 결과이다.
본 연구에서는 연산 부하가 매우 큰 Bio-FET 시뮬레이션을 위해 낮은 비용으로 대규모 병렬처리 환경 구축이 가능한 최신 그래픽 프로세서(GPU)를 이용해서 선형 방정식 해법을 수행하기 위한 병렬 Bi-CG(Bi-Conjugate Gradient) 방식을 제안한다. 제안하는 병렬 방식에서는 반도체 소자 시뮬레이션, 전산유체역학(CFD), 열전달 시뮬레이션 등을 포함한 다양한 분야에서 많은 연산량이 집중되어 전체 시뮬레이션에 필요한 시간을 증가시키는 포아송(Poisson) 방정식의 해를 병렬 방식으로 구한다. 그 결과, 이 논문의 테스트에서 사용된 FDM 3차원 문제 공간에서 단일 CPU 대비 연산 속도가 최대 30 배 이상 증가했다. 실제 구현은 NVIDIA의 태슬라 아키텍처(Tesla Architecture) 기반 GPU에서 범용 목적으로 병렬 프로그래밍이 가능한 NVIDIA사의 CUDA(Compute Unified Device Architecture) 환경에서 수행되었으며 기존 연구가 주로 32 비트 정밀도(single floating point) 실수 범위에서 수행된 것과는 달리 본 연구는 64 비트 정밀도(double floating point) 실수 범위로 수행되어 Bi-CG 해법의 수렴성을 개선했다. 특히, CUDA는 비교적 코딩이 쉬운 반면, 최적화가 어려운 특성이 있어 본 논문에서는 제안하는 Bi-CG 해법에서의 최적화 방향도 논의한다.
본 논문에서는 소형 RS(Reed-Solomon) 디코우더의 효율적인 하드웨어 아키텍처를 제안하였다. 전체 아키텍쳐는 3단 파이프라인 구조를 택하였으며, 디코우딩 연산시, 에러위치다항식은 BMA(Berlekamp-Massey algortihm)에 의한 fast-iteration 방식으로 구하였으며, 계산의 복잡성이 요구도는 신드롬연산 부분은 ROM 테이블을 이용해서 병렬로 수행하고, 에러위치 다항식을 근을 구하는 부분은 Chein search 알고리즘을 응용한 방법을 ROM을 채택하여 계산하였다. 제안된 디코우더로 3심볼 랜덤에러정정을 수행하며, 시스템클록 25MHz를 사용하여 124Mbps의 디코우딩 데이터율을 가짐을 확인할 수 있었다.
본 논문에서는 데이터 병렬성이 뛰어난 벡터 기반의 Rasterization 알고리즘을 CUDA를 이용하여 코어 매핑에 따른 성능 및 에너지 효율을 분석해 보았다. 블록 사이즈를 동일하게 맞춘 후 블록의 차원을 변경 하는 방법과 블록 사이즈를 변경하는 방법을 사용하여 실험하였다. 모의실험결과, 블록 사이즈가 동일할 때는 오차 범위 내로 동일한 성능과 에너지 효율을 보였다. 아키텍처마다 모든 자원을 사용할수 있는 이론적인 블록 및 스레드 구조가 존재하지만 메모리 접근에 대한 최적화를 이루어 내지 못한다면 Amdahl's law에 의해 성능 향상에 한계가 있다는 것을 확인하였다.
본 연구에서는 멀티코어 기반의 안드로이드 부팅 최적화 방법을 제안하고 있다. 안드로이드 부팅 구간 중 Zygote란 프로세스 초기화 과정 시 가장 많은 연산을 하고 있었으며 Zygote 내부의 4가지 기능 중 preload구간에서 병렬기법을 적용하였다. preload는 어플리케이션의 구동에 필요한 클래스들과 리소스를 순차적으로 가져오는 함수호출 구조로 이 함수호출 구조를 다른 프로세스로 분리시켜 독립적인 연산을 수행하였다. 제안 방법을 S5PV310 듀얼코어와 Exynos4412 쿼드코어에 적용시켰고 각각 14%와 12%의 성능향상 결과를 보였다.
본 논문에서는 단일 명령어, 다중 데이터 처리 기반의 매니코어 프로세서를 이용하여 높은 계산량이 요구되는 차감 클러스터링 알고리즘을 병렬 구현하고 성능을 향상시킨다. 또한 차감 클러스터링 알고리즘을 위한 최적의 매니코어 프로서서 구조를 선택하기 위해 다섯 가지의 프로세싱 엘리먼트 (processing element, PE) 구조 (PEs=16, 64, 256, 1,024, 4,096)를 모델링하고, 각 PE구조에 대해 실행시간 및 에너지 효율을 측정한다. 두 가지 의료 영상 및 각 영상의 세 가지 해상도(($128{\times}128$, $256{\times}256$, $512{\times}512$)를 이용하여 모의 실험한 결과, 모든 경우에 대해 PEs=4,096구조에서 최고의 성능 및 에너지 효율을 보였다.
본 논문에서는 MDA(Model Driven Architecture) 기반의 임베디드 소프트웨어 컴포넌트 개발 방법을 소개한다. 이 방법은 이종의 임베디드 시스템에서 소프트웨어의 재사용성에 관한 문제점을 해결하고자 MDA기법을 임베디드 소프트웨어 개발에 적응한 것이다. 제안한 방법을 통해 하나의 메타 모델(Target Independent Model)을 각각의 다른 도메인에 맞는 타겟 종속적 모델(Target Specific Model)들을 만들고, 그에 따른 소스 코드(Target Dependent Code)를 개발하는 것이다. 이때 기 개발된 메타모델은 이종의 임베디드 시스템 개발에 재사용하려는 것이 목적이다. 우리는 이 방법에 따른 도구에 기존 xUML의 동적 모델링에서 표현되지 못하는 부분(병렬성, 실시간 등)을 보완하기 위해 확장하여 채택하였다. 확장된 xUML 노테이션을 기반으로 구현한 모델링 도구를 소개한다. 이는 임베디드 또는 병렬/실시간 소프트웨어의 모델링이 가능하다. 제안한 방법의 적응사례로서 이종 임베디드 시스템의 모델링을 통한 필드 개발을 보여준다.
본 논문에서는 GPU 병렬 처리 하드웨어 아키텍처 내 최소 물리적 스레드 실행 단위(warp) 내에서 shifted sort 기반 k개 최근접 이웃 검색 기법을 구현하는 방법을 논의하고 일반적으로 동일한 목적으로 널리 사용되는 GPU 기반 kd-tree 및 CPU 기반 ANN 라이브러리와 비교한 결과를 제시한다. 또한 많은 애플리케이션에서 k가 비교적 작은 값이 필요한 경우가 많다는 사실을 고려해서 k가 warp 내부에서 직접 처리 가능한 2, 4, 8, 16개일 때 최적화에 집중한다. 구현 세부에서는 사용한 CUB 공개 라이브러리의 루프 내 메모리 관리 방법, GPU 하드웨어 직접 명령 적용 방법 등의 최적화 방법을 논의한다. 실험 결과, 제안하는 방법은 기존의 GPU 기반 유사 방법에 비해 데이터 지점과 질의 지점의 개수가 각각 $2^{23}$개 일 때 16배 이상의 빠른 처리 속도를 보였으며 이러한 경향은 처리해야 할 데이터의 크기가 커지면 더욱 더 커지는 것으로 판단된다.
GPU(Graphics Processing Unit)는 범용 CPU와는 달리 다수코어 스트리밍 프로세서(manycore streaming processor) 형태로 특화되어 발전되어 왔으며, 최근 뛰어난 병렬 처리 연산 능력으로 인하여 점차 많은 영역에서 CPU의 역할을 대체하고 있다. 이러한 추세에 따라 최근 NVIDIA 사에서는 GPGPU(General Purpose GPU) 아키텍처인 CUDA(Compute Unified Device Architecture)를 발표하여 보다 유연한 GPU 프로그래밍 환경을 제공하고 있다. 일반적으로 CUDA API를 사용한 프로그래밍 작업시 GPU의 계산구조에 관한 여러 가지 요소들에 대한 특성을 정확히 파악해야 효율적인 병렬 소프트웨어를 개발할 수 있다. 본 논문에서는 다양한 실험과 시행착오를 통하여 획득한 CUDA 프로그래밍에 관한 최적화 기법에 대하여 설명하고, 그러한 방법들이 프로그램 수행의 효율에 어떠한 영향을 미치는지 알아본다. 특히 특정 예제 문제에 대하여 효과적인 계층 구조 메모리의 접근과 코어 활성화 비율(occupancy), 지연 감춤(latency hiding) 등과 같이 성능에 영향을 미치는 몇 가지 규칙을 실험을 통해 분석해봄으로써, 향후 CUDA를 기반으로 하는 효과적인 병렬 프로그래밍에 유용하게 활용할 수 있는 구체적인 방안을 제시한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.