• 제목/요약/키워드: 병렬유전자알고리즘

검색결과 72건 처리시간 0.03초

2-단계 병렬 유전자 알고리즘 (A Two-Phase Parallel Genetic Algorithm)

  • 길원배;이승구
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (A)
    • /
    • pp.40-42
    • /
    • 2003
  • 본 논문에서는 유전자 알고리즘(Genetic Algorithm: GA)의 새로운 병렬화 방법을 제안 하고 있다. 기존의 병렬 유전자 알고리즘(Parallel Genetic Algorithm: PGA)은 전체 개체집단을 부개체집단 (Subpopulation)으로 나누어 해의 가능 영역을 동시에 탐색하는 것이 일반적인 방법인데 반해. 본 논문에서 제안하는 병렬화 방법은 전체 해의 영역을 나누어 각각의 영역에서 독립된 개체집단들이 서로 다른 영역을 탐색하게 하는 방법이다. 이 방법은 두 가지 단계의 병렬 유전자 알고리즘으로 구성된다. 먼저 적응교배 연산자(Adaptive Crossover Operator: ACO)를 이용한 PGA를 통해 지역해에 인접한 범위들로 해의 영역을 나누고, 이렇게 나누어진 각각의 영역들에서 다시 병렬로 GA를 적용시켜 자세하게 탐색하는 방법이다. 첫 번째 수행되는 PGA 단계에서는 탐색 시간을 줄이고 두 번째 PGA 단계에서는 보다 자세한 탐색을 하기 위해 정밀도(Precision)의 조정을 유전자 알고리즘의 병렬화에 적용하였으며. 이를 통해 빠르고 자세한 탐색이 가능한 유전자 알고리즘의 병렬화 방법을 제안하고 있다.

  • PDF

이동 에이전트를 이용한 병렬 유전자 알고리즘의 성능연구 (Parallel Genetic Algorithm Performance Study using Mobile Agent)

  • 조용만;강태원;김미숙
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.172-174
    • /
    • 2001
  • 유전자알고리즘을 병렬로 처리하려는 이유는 수행시간의 향상과 최적해의 향상이다. 하지만 이에 대한 연구와 응용이 적은데 이는 연구 환경이 열악하기 때문이다. 즉, 슈퍼컴퓨터와 같은 고가의 장비가 필요하며, 그것이 보편적으로 우리 주변에 있지 않다는 것이 가장 큰 장애가 되었다. 이를 극복하기 위한 방법은 에이전트라는 소프트웨어를 이용해서 유전자 알고리즘을 병렬로 처리를 하는 것이다. 이 연구에서는 이런 방법으로 유전자 알고리즘을 병렬로 처리를 하여도 수행시간의 향상과 최적해의 향상을 보일 수 있는지를 연구한다.

  • PDF

병렬분산 유전자 알고리즘을 이용한 선형 최적화에 관한 연구 (A Study on the Hull Form Optimization Using Parallel-Distributed Genetic Algorithm)

  • 조민철;박제웅;김윤영
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 추계학술대회 논문집
    • /
    • pp.47-52
    • /
    • 2003
  • 지금까지의 선형 최적화에 대한 연구는 고전적인 최적화 기법인 비선형계획법과 유동해석법을 중심으로 생물의 진화 알고리즘을 바탕으로 한 유전자 알고리즘과 인공지능에 기초를 둔 신경망이론 등이 이용되어 왔다. 또한 최근 컴퓨터의 성능이 급속도로 향상됨에 따라 전산유체역학에 기초한 시뮬레이션 평가기법도 사용되고 있다. 본 논문에서는 유전자 알고리즘을 이용한 선형 최적화 방법을 제시하였다. 그리고 광역 최적해의 효과적인 검색과 빠른 접근을 위한 방법으로 네트워크 시스템을 기반으로 한 병렬분산 유전자 알고리즘 시스템(PDGAS)을 개발하였으며 그 성능을 기존의 진화 알고리즘과 비교${\cdot}$분석함으로써 선형 최적화의 가능성을 확인하였다.

  • PDF

동적 네트워크 환경하의 분산 에이전트를 활용한 병렬 유전자 알고리즘 기법 (Applying Distributed Agents to Parallel Genetic Algorithm on Dynamic Network Environments)

  • 백진욱;방정원
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권4호
    • /
    • pp.119-125
    • /
    • 2006
  • 네트워크를 통하여 서로 연결된 컴퓨팅 자원들의 집합을 분산 시스템이라고 정의할 수 있다. 최적화 문제 영역에서 가장 중요한 해결 기법 중에 하나인 병렬 유전자 알고리즘은 분산 시스템을 기반으로 하고 있다. 인터넷과 이동 컴퓨팅과 같은 동적 네트워크 환경 하에서 네트워크의 상태는 가변적으로 변할 수 있어 기존의 병렬 유전자 알고리즘을 분산 시스템에서 최적화 문제를 해결하기 위하여 그대로 사용하기에는 비효율적이다. 본 논문에서는 동적 네트워크 환경 하에서 분산 에이전트를 사용하여 병렬 유전자 알고리즘을 효율적으로 사용할 수 있는 기법을 제시한다.

  • PDF

HFC 기반 유전자알고리즘에 관한 연구 (A study on HFC-based GA)

  • 김길성;최정내;오성권;김현기
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2007년도 춘계학술대회 학술발표 논문집 제17권 제1호
    • /
    • pp.341-344
    • /
    • 2007
  • 본 논문에서는 계층적 공정 경쟁 개념을 병렬 유전자 알고리즘에 적용하여 계층적 공정 경쟁 기반 병렬유전자 알고리즘 (Hierarchical Fair Competition Genetic Algorithm: HFCGA)을 구현하였을 뿐만 아니라 실수코딩 유전자 알고리즘(Real-Coded Genetic Algorithm: RCGA)에서 좋은 성능을 갖는 산술교배(Arithmetic crossover), 수정된 단순교배(modified simple crossover) 그리고 UNDX(unimodal normal distribution crossover)등의 다양한 교배연산자들을 적용, 분석함으로써 개선된 병렬 유전자 알고리즘을 제안하였다. UNDX연산자는 다수의 부모(multiple parents)를 이용하여 부모들의 기하학적 중심(geometric center)에 근접하게 정규분포를 이루며 생성된다. 본 논문은 UNDX를 이용한 HFCGA모델을 구현하고 함수파라미터 최적화 문제에 많이 쓰이는 함수들에 적용시킴으로써 그 성능의 우수성을 증명 한다.

  • PDF

서버의 계산능력을 활용한 네트워크기반 병렬유전자알고리즘의 성능향상 (Performance Improvement of Network Based Parallel Genetic Algorithm by Exploiting Server's Computing Power)

  • 송봉기;김용성;성길영;우종호
    • 전자공학회논문지CI
    • /
    • 제41권4호
    • /
    • pp.67-72
    • /
    • 2004
  • 본 논문에서는 네트워크기반의 클라이언트-서버모델에서 병렬유전자알고리즘의 최적해 수렴속도를 향상시키는 방법을 제안한다. 전역 최적해를 지역 엘리트의 평가만으로 구하는 기존의 방법과는 달리 제안한 방법은 서버에서 지역 엘리트의 평가를 통해 전역 최적해를 구하고 유휴시간에 유전자알고리즘을 적용하여 전역 최적해의 적합도를 개선한다. 서버에서 개선된 전역 최적해를 클라이언트의 유전자알고리즘에서 사용하므로 전체 알고리즘의 최적해 수렴속도가 향상된다 Fmax(g)는 g번째 세대의 최대 적합도, G는 서버에서 개선되는 세대수일 때, 지역 최적해의 이주 시 서버에서 개선되는 적합도는 (equation omitted)(F/sub max/(g)-F/sub max/(g-1)) 이다. 여기서 클라이언트의 수가 증가하면 G가 작아져서 적합도 개선치는 줄어드나 기존의 방법보다 적합도가 개선됨을 확인할 수 있었다.

분산병렬 시스템에서 유전자 알고리즘을 이용한 스케쥴링 방법 (Generic Scheduling Method for Distributed Parallel Systems)

  • 김화성
    • 한국통신학회논문지
    • /
    • 제28권1B호
    • /
    • pp.27-32
    • /
    • 2003
  • 본 논문에서는 고속 네트웍 기반의 분산 병렬 시스템에서 다양한 내재 병렬 형태를 갖는 프로그램의 효과적인 수행을 위한 유전자 알고리즘 기반의 태스크 스케쥴링 방법(Genetic Algorithm based Task Scheduling GATS)을 제안한다. 분산병렬 시스템은 고속 네트웍을 통해 연결되어진 다수의 범용, 병렬, 벡터 컴퓨터들로 구성되어진다. 분산병렬 처리의 목적은 다양한 내재 병렬 형태를 갖는 연산 집약적인 문제들을 다수의 고성능 및 병렬 컴퓨터들의 각기 다른 능력을 최대한 이용하여 해결함에 있다 분산병렬 시스템에서 스케쥴링을 통하여 더 많은 속도향상을 얻기 위해서는 시스템간의 부하 균형보다는 태스크와 병렬 컴퓨터간의 병렬특성의 일치가 주의 깊게 다루어져야 하며 태스크의 이동으로 인한 통신 오버헤드가 최소화되어야 한다 본 논문에서는 유전자 알고리즘의 동작이 병렬 특성을 감안하여 이루어질 수 있도록 초기화 방법과 지식 기반의 mutation 방법을 제안한다.

병렬 마이크로 유전자 알고리즘을 이용한 복합재 적층 구조물의 최적설계 (Optimal Design of Laminated Stiffened Composite Structures using a parallel micro Genetic Algorithm)

  • 이무근;김천곤
    • Composites Research
    • /
    • 제21권1호
    • /
    • pp.30-39
    • /
    • 2008
  • 본 논문에서는 기존의 유전자 알고리즘을 대신하여 병렬 마이크로 유전자 알고리즘을 사용한 복합재료 적층 구조물의 최적설계를 수행하였다. 마이크로 유전자 알고리즘은 한 세대 당 보통 5개의 개체로 해를 탐색한다 비록 세대를 구성하는 인구수는 적지만 공칭수렴 판단과 재초기화 과정을 통해 다양성을 제공하기 때문에 최적해 탐색이 가능하다. 2가지의 복합재 구조물의 최적화 문제를 가정하고 이를 마이크로 유전자 알고리즘을 사용하여 해를 구하였다. 효율성 판단을 위해서 기존의 유전자 알고리즘과 결과를 비교하였다. 두 문제 모두 마이크로 유전자 알고리즘이 비슷한 결과를 도출하면서도 약 70%의 계산량 감소를 보였다. 마이크로 유전자 알고리즘을 사용하여 일정 범위 내에서 변하는 하중을 받고 있는 복합재 적층 구조물의 최적설계를 수행하였다. 계산 결과 고정된 하중상태 하에서 얻은 최적해보다 하중 변화에 덜 민감한 설계변수를 얻을 수 있었다. 이상의 문제를 통해 다양한 설계변수를 갖는 복합재 적층 구조물의 최적설계의 한 방법으로서 마이크로 유전자 알고리즘이 효율적임을 확인하였다.

병렬 처리 시스템에서 확장된 유전자 알고리즘을 이용한 태스크 스케줄링 설계 (A Design of the Task Scheduling using a Extended Genetic Algorithm in Parallel Processing Systems)

  • 박월선;윤성대
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2001년도 추계학술발표논문집 (상)
    • /
    • pp.279-282
    • /
    • 2001
  • 병렬프로그램을 멀티프로세서로 스케줄링하는 문제의 해를 구하기 위하여 본 논문에서는 확장된 유전자 알고리즘을 적용한다. 확장된 유전자알고리즘인 MSEGA는 각 노드의 선행관계에 관한 휴리스틱한 정보와 간단한 일차원 배열구조가 통합된 염색체 코딩방법과 염색체 구성인자 중 우성 유전인자의 형질을 다음세대로 존속시키는 교배연산자와 프로세서 효율성이 고려된 평가 함수등으로 순서제약이 있는 병렬프로그램 스케줄링 문제 및 FFT(Fast Fourier Transform)형태의 데이터 흐름도상에서 관련 연구 중 Hou의 유전자 알고리즘과 BEA(binary-exchange algorithm)에 의한 스케줄링 결과보다 전체실행시간에 있어 HSEGA에 의한 스케줄링이 더 우수함을 보였다.

  • PDF

병렬유전자알고리즘을 이용한 탐지노드 선정문제의 에너지 효율성과 수렴성 향상에 관한 해석 (Analysis of Improved Convergence and Energy Efficiency on Detecting Node Selection Problem by Using Parallel Genetic Algorithm)

  • 성기택
    • 한국정보통신학회논문지
    • /
    • 제16권5호
    • /
    • pp.953-959
    • /
    • 2012
  • 센서네트워크에서는 다수의 유휴노드가 존재하며 네트워크의 이상행위 탐지는 이러한 유휴노드를 이용하여 구현될 수 있다. 최적화 문제로 정의된 탐지노드선정 문제에 대하여, 기존의 방법에서는 중앙처리방식의 유전자 알고리즘을 이용하였다. 본 논문에서는 최적 값으로의 수렴 성을 개선함과 동시에 에너지 효율성을 향상시키는 방법으로써 네트워크의 토폴로지 특성을 고려한 병렬유전자알고리즘을 이용한 방법을 제안하였다. 시뮬레이션을 통하여 제안한 방법이 기존의 방법에 비하여 최적 값으로의 수렴이 개선되었음과 에너지 효율적임을 확인하였다.