• Title/Summary/Keyword: 병렬운전제어

Search Result 153, Processing Time 0.026 seconds

The Control of Parallel Operation for Static UPSs (Static UPS 병렬운전 제어)

  • Kim, D.U.;Kim, Y.P.;Shin, H.J.;Baek, B.S.;Ryu, S.P.;Min, B.G.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2048-2050
    • /
    • 1998
  • An uninterruptible power supply(UPS) with parallel operation is used to increase the power capacity of the system or to secure higher reliability at critical loads. In the parallel operating system composed of the multiple UPSs, load-sharing, i.e. current balance control between them is key technique. Because of its low impedance and quick response characteristics, inverter output current changes very rapidly and thereby easily researches an overload condition. The difference between total load current divided by number of operating inverters and its own current is detected as unbalanced current. Then frequency and voltage are controlled to minimize the active component and the reactive component. A good performance of the proposed load-sharing technique is verified by experiments in the parallel operating system with two 40kVA UPSs.

  • PDF

Parallel Operation Method using New Cubic Equation Droop Control of Three-Phase AC/DC PWM Converter for DC Distribution Systems (DC배전용 3상 AC/DC PWM 컨버터의 새로운 3차방정식 Droop 제어를 적용한 병렬운전 기법)

  • Shin, Soo-Choel;Lee, Hee-Jun;Park, Yun-Wook;Hong, Seok-Jin;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.233-239
    • /
    • 2014
  • This paper proposes that each converter supplies the power using the proposed droop control for the parallel operation of the converters. The proposed method is easy to increase the power as parallel system in DC distribution. By improving conventional droop-control method used in AC grid newly, a droop controller is designed to apply droop control in DC grid. And the control method of the proposed droop controller is explained particularly. In this paper, by applying the proposed control method to DC distribution system, propriety is verified through the simulation and the experiment.

Droop Control Method for Circulating Current Reduction in Parallel Operation of BESS (BESS의 병렬운전 시 발생되는 순환 전류 저감을 위한 드룹 제어 기법)

  • Sin, Eun-Suk;Kim, Hyun-Jun;Yang, Won-Mo;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.708-717
    • /
    • 2015
  • This paper proposes a new reduction scheme of circulating current when two units of BESS (Battery Energy Storage System) are operated in parallel with conventional droop control. In case of using conventional droop, the terminal voltage of each BESS are not equal due to the unequal line impedance, which causes the circulating current. The operation performance of BESS is critically dependant on the circulating current because it increases system losses which causes the increasement of required system rating. This paper introduces a new reduction scheme of circulating current in which the terminal voltage difference of each BESS is compensated by adding feed-forward path of line voltage drop to the droop control. The feasibility of proposed scheme was first verified by computer simulations with PSCAD/EMTDC software. After then a hardware prototype with 5kW rating was built in the lab and many experiments were carried out. The experimental results were compared with the simulation results to confirm the feasibility of proposed scheme. Two parallel operating BESS with proposed scheme shows more accurate performance to suppress the circulating current than those with the conventional droop control.

A Study on Design of High Power Brushless DC Propulsion Motor with Insert Inverter type in Rotor (인버터 내장형 대용량 BLDC 추진 전동기의 설계에 관한 연구)

  • Sung, Il-Kwon;Kim, Dong-Sok;Park, Gwan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1077-1079
    • /
    • 2005
  • 최근 산업기기의 대형화로 인하여 전기기기 및 전력기기의 고효율 대용량 설계에 대한 관심이 커지고 있다. 그 동안에는 대용량 전동기로 주로 유도전동기와 릴럭턴스 전동기가 사용되어 왔다. 그러나 유도전동기는 저속에서의 효율이 낮으며 회전자의 열손실이 효율과 역률을 저하시키는 단점이 있고, 릴럭턴스 전동기는 구조 및 동작원리 상 큰 맥동토크로 인하여 소음과 진동이 매우 크다. 이에 효율과 역률이 좋고 고속운전이 가능한 영구자석형 전동기에 대한 연구가 많이 진행되었고 최근에는 영구자석 재질(희토류계)의 발달함로 인하여 고속 대용량 자석계자형 BLDC와 영구자석형 동기전동기의 설계가 가능해져 대형기에 많이 이용되고 있다. 그러나 대용량 전기기기의 경우 그 크기와 부피가 매우 크고 대전류 대전압의 전원을 공급하여야 하기 때문에 인버터부를 병렬 연결하여야 하므로 제어부를 포함한 전동기의 설치 공간이 증가해 지는 단점이 있다. 이에 본 연구에서는 인버터를 전동기의 회전자 내부에 배치한 인버터 내부형 5[MW]급 BLDC 전동기를 설계하고자 하였다.

  • PDF

A Design of Power System Stabilization of TCSC System for Power system Oscillation Damping (전력 시스템의 동요 억제를 위한 TCSC용 안정화 장치 설계)

  • 정형환;허동렬;왕용필;박희철;이동철
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.2
    • /
    • pp.104-112
    • /
    • 2002
  • In this paper, it is suggested that the selection method of parameter of Power System Stabilizer(PSS) with robustness in low frequency oscillation for Thyristor Controlled Series Capacitor(TCSC) using Geletic Algorithm(GA). A TCSC meddle consists of a stories capacitor and a parallel path with a thyristor valve and a series inductor. Also in in parallel, as is typical with series capacitor applications, is a metal-oxide varistor(MOV) for overvoltage protection. The proposed PSS parameters are optimized using GA in order to maintain optimal operation of TCSC which is expected to be applied in transmission system to achieve a number of benefits under the various operating conditions. In order to verify the robustness of the proposed method, we considered the dynamic response of angular velocity deviation and terminal voltage deviation under a power fluctuation and rotor angle variation.

A Single-Phase Quasi Z-Source AC-AC Converter with a Series Connection of the Output Terminals (출력이 직렬 결합된 단상 Quasi Z-소스 AC-AC 컨버터)

  • Oum, Jun-Hyun;Jung, Young-Gook;Lim, Young-Cheol;Choi, Joon-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.415-429
    • /
    • 2011
  • In this study, a single-phase quasi Z-source AC-AC converters with a series connection of the output terminals is proposed. The proposed system has configuration that the input terminals of two quasi Z-source AC-AC converters are connected in parallel and its output terminals are connected in series. The out of phase mode and in phase mode of the proposed system are presented. To verify the validity of the proposed converter, a DSP controlled hardware was made and PSIM simulation was executed. As a result, controlling the duty ratio of the converter, the desired buck-boost output voltages could be generated. For each modes, as compared with the single converter operation, the proposed converter could enhance the efficiency and input power factor according to different loads. Also, in case of the out of phase mode under the constant load, the efficiency and input power factor of the proposed system are increased 10[%], 35[%] respectively in compared with the single converter. And, the output voltage is constantly controlled in dynamic state in case while the load is suddenly changed.

Voltage Control Scheme in Synchronous Reference Frame for Improving Dynamic Characteristics in Parallel Operation of Double-Conversion UPSs (이중 변환 UPS 병렬 운전의 제어 동특성 향상을 위한 동기 좌표계 전압 제어기 구조)

  • Mo, Jae-Sing;Yoon, Young-Doo;Ryu, Hyo-Jun;Lee, Min-Sung;Choi, Seung-Cheul;Kim, Sung-Min;Kim, Seok-Min;Kang, Ho-Hyun;Kim, Hee-Jung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.4
    • /
    • pp.283-290
    • /
    • 2022
  • This study proposes a voltage control scheme in a synchronous reference frame to improve the dynamic characteristics of double-conversion UPSs. UPSs need to control positive and negative sequence voltage, so that positive and negative sequence extractors are generally used to obtain each sequence of the voltage and current. Voltage and current controllers for each sequence are implemented. However, the extractor causes considerable delay, and the delay restricts the control performance, especially for the current controller. To improve the dynamics of the current controller, the proposed scheme adopts a unified current controller without separating positive and negative sequences. By using discrete-time current controller, the control bandwidth can be extended significantly so that negative sequence current can be controlled. To enhance the performance, an additional feed-forward technique for output voltage regulation is proposed. The validity of the proposed controller is verified by experiments.

A Study on the Control Algorithm for Engine Clutch Engagement During Mode Change of Plug-in Hybrid Electric Vehicles (플러그인 하이브리드 차량의 모드변환에 따른 엔진클러치 접합 제어알고리즘 연구)

  • Sim, Kyuhyun;Lee, Suji;Namkoong, Choul;Lee, Ji-Suk;Han, Kwan-Soo;Hwang, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.801-805
    • /
    • 2016
  • In this paper, engine clutch engagement shock is analyzed during the mode change of plug-in hybrid electric vehicles. Multi-driving mode includes the EV (electric vehicle) mode, HEV (hybrid electric vehicle) mode, and engine operating mode. Depending on the mode change, the engine clutch is either engaged or disengaged. The magnitude of shock during clutch engagement is very important because it impacts vehicle acceleration and clutch synchronization speed, which affects ride comfort substantially. The performance simulator of plug-in hybrid electric vehicles was developed using MATLAB/Simulink. The simulation results show that the mode change control algorithm is necessary for minimizing shock during clutch engagement.

The bidirectional DC module type PCS design for the System Inter Connection PV-ESS of Secure to Expandability (계통 연계 PV-ESS 확장성 확보를 위한 병렬 DC-모듈형 PCS 설계)

  • Hwang, Lark-Hoon;Na, Seung-Kwon;Choi, Byung-Sang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.1
    • /
    • pp.56-69
    • /
    • 2021
  • In this paper, the PV system with a link to the commercial system needs some advantages like small capacity, high power factor, high reliability, low harmonic output, maximum power operation of solar cell, and low cost, etc. as well as the properties of inverter. To transfer the PV energy of photovoltaic power generation system to the system and load, it requires PCS in both directions. The purpose of this paper is to confirm the stable power supply through the load leveling by presenting the PCS considering ESS of photovoltaic power generation. In order to achieve these purpose, 5 step process of operation mode algorithm were used according to the solar insolation amount and load capacity and the controller for charging/ discharging control was designed. For bidirectional and effective energy transfer, the bidirectional converter and battery at DC-link stage were connected and the DC-link voltage and inverter output voltage through the interactive inverter were controlled. In order to prove the validity of the suggested system, the simulation using PSIM was performed and were reviewed for its validity and stability. The 3[kW] PCS was manufactured and its test was conducted in order to check this situation. In addition, the system characteristics suggested through the test results was verified and the PCS system presented in this study was excellent and stronger than that of before system.

The Arch Type PV System Performance Evaluation of Multi Controlled Inverter for Improve the Efficiency (효율개선을 위한 다중제어 인버터방식의 아치형 PV System 성능 분석)

  • Lee, Mi-Yong;Park, Jeong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5452-5457
    • /
    • 2012
  • It is saving material cost and construction cost by replacing conventional building materials, and It has advantages for aesthetic value. In the Europe, the United States, Japan and other country research about BIPV is actively being carried out and marketability is also being infinity expanding. Arch type PV systems efficiency characteristics is different depending on PV array's directly connection, parallel connection and arches angle, but is a lack of analysis on this nowadays. When the arch type PV system design up, they consider about aesthetic value and they didn't consider about generation efficiency. In this paper, we try to improve the efficiency through optimization of arch type PV system and estimation of the efficiency parameters of the arch type PV system, such as latitude, longitude, temperature, insolation, arch angle and each kind loss from system organization. For improving Arched PV system efficiency, proposed multiple control inverter system, and using simulation tool of Arched PV system "Solar pro", flat-plate type and many arch type PV system configuration the driving characteristics were compared and analyzed.