• Title/Summary/Keyword: 병렬로봇

Search Result 183, Processing Time 0.029 seconds

Study on the Precision Characteristics of a Planar 3 Degrees-of-Freedom Parallel Mechanism (평면형 3 자유도 병렬 메카니즘의 정밀도 특성에 관한 연구)

  • Kim, Jae-Sub;Kim, Hee-Guk;Cho, Hwang
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.781-786
    • /
    • 1996
  • In this paper, output precision characteristic of planar 3 and 6 degree-of-freedom parallel mechanisms are investigated. The 6 degree-of-freedom mechanism is formed by adding an additional small link along with an actuated joint in each of serial subchain of the 3 degree-of-freedom mechanism. First, kinematic analysis for two parallel mechanisms are performed, then their first-order kinematic characteristics are examined via isotropic index and minimum velocity transmission ratio of the mechanisms. It can be concluded that the planar 6 degrees-of-freedom parallel mechanism can be very effectively employed as a high-precision macro-micro manipulator from the analysis results when its link lengths are properly chosen.

  • PDF

Intelligent Digital Redesign of Fuzzy-Model-Based Controller for Dynamic Systems with Uncertainties (불확실성을 갖는 동적 시스템을 위한 퍼지 모델 기반 제어기의 지능형 디지털 재설계)

  • Cho, Kwang-Lae;Lee, Yeun-Woo;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2049-2051
    • /
    • 2003
  • 본 논문에서는 불확실성을 포함할지도 모르는 비선형 시스템의 추적 제어에 효과적인 퍼지모델기반 제어기에 대한 지능형 디지털 재설계 기법을 제안한다. TS 퍼지모델은 불확실 비선형 시스템의 퍼지모델링에 적용되었다. 안정화와 추적을 위한 퍼지모델기반 제어기를 설계하기 위해 확장 병렬 분산 보상 기법이 이용되었다. 설계된 연속시간 제어기는 지능형 디지털 재설계 기법을 이용해 등가의 이산시간 제어기로 변환되었다. 본 논문에서 제안한 지능형 디지털 재설계방법은 전형적인 단일 링크 유연 로봇 시스템에 적용하여 그 응용 가능성과 효용성을 입증한다.

  • PDF

평판형 급집전코일의 공진주파수 변화를 이용한 접촉식 무선충전 시스템

  • Lee, Byeong-Hun;Kim, Hyeon-Jae;Im, Chun-Taek
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.60-61
    • /
    • 2010
  • 본 논문에서는 휴머노이드 로봇 등에 적용하기 위해, 평판형 급전코일과 집전코일의 접촉 유무에 따라 공진주파수가 변화하는 접촉식 무선충전 시스템을 제안하였다. 다양한 급집전코일에 대해 코일의 형상과 위치별 급집전효율 및 EMF(ElectroMagnetic Field)의 영향을 연구했다. 평판형 집전코일은 어레이 형태로 바닥에 설치되는데, 입력전원에 대해 각각 병렬로 연결되어 있어서 집전코일이 접촉하지 않는 경우에는 공진주파수가 입력전원의 주파수를 크게 벗어나서 자동으로 전원공급이 최소화된다. 집전코일이 급전코일 어레이 위에 위치하는 경우에는, 급전코일의 공진주파수가 입력전원의 주파수와 일치하게 되어 전력이 공급되게 된다. 따라서 집전코일이 덮고 있는 부분만 급전코일 어레이에 전력이 공급되므로, 급집전 효율이 높고 인체에 대한 자기장 노출이 작아져서, 경제적이고 안전한 무선충전 시스템을 구성할 수 있다.

  • PDF

Multi-DNN Acceleration Techniques for Embedded Systems with Tucker Decomposition and Hidden-layer-based Parallel Processing (터커 분해 및 은닉층 병렬처리를 통한 임베디드 시스템의 다중 DNN 가속화 기법)

  • Kim, Ji-Min;Kim, In-Mo;Kim, Myung-Sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.842-849
    • /
    • 2022
  • With the development of deep learning technology, there are many cases of using DNNs in embedded systems such as unmanned vehicles, drones, and robotics. Typically, in the case of an autonomous driving system, it is crucial to run several DNNs which have high accuracy results and large computation amount at the same time. However, running multiple DNNs simultaneously in an embedded system with relatively low performance increases the time required for the inference. This phenomenon may cause a problem of performing an abnormal function because the operation according to the inference result is not performed in time. To solve this problem, the solution proposed in this paper first reduces the computation by applying the Tucker decomposition to DNN models with big computation amount, and then, make DNN models run in parallel as much as possible in the unit of hidden layer inside the GPU. The experimental result shows that the DNN inference time decreases by up to 75.6% compared to the case before applying the proposed technique.

A Study on Improvement of the Human Posture Estimation Method for Performing Robots (공연로봇을 위한 인간자세 추정방법 개선에 관한 연구)

  • Park, Cheonyu;Park, Jaehun;Han, Jeakweon
    • Journal of Broadcast Engineering
    • /
    • v.25 no.5
    • /
    • pp.750-757
    • /
    • 2020
  • One of the basic tasks for robots to interact with humans is to quickly and accurately grasp human behavior. Therefore, it is necessary to increase the accuracy of human pose recognition when the robot is estimating the human pose and to recognize it as quickly as possible. However, when the human pose is estimated using deep learning, which is a representative method of artificial intelligence technology, recognition accuracy and speed are not satisfied at the same time. Therefore, it is common to select one of a top-down method that has high inference accuracy or a bottom-up method that has high processing speed. In this paper, we propose two methods that complement the disadvantages while including both the advantages of the two methods mentioned above. The first is to perform parallel inference on the server using multi GPU, and the second is to mix bottom-up and One-class Classification. As a result of the experiment, both of the methods presented in this paper showed improvement in speed. If these two methods are applied to the entertainment robot, it is expected that a highly reliable interaction with the audience can be performed.

A Parallel Mode Confocal System using a Micro-Lens and Pinhole Array in a Dual Microscope Configuration (이중 현미경 구조를 이용한 마이크로 렌즈 및 핀홀 어레이 기반 병렬 공초점 시스템)

  • Bae, Sang Woo;Kim, Min Young;Ko, Kuk Won;Koh, Kyung Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.979-983
    • /
    • 2013
  • The three-dimensional measurement method of confocal systems is a spot scanning method which has a high resolution and good illumination efficiency. However, conventional confocal systems had a weak point in that it has to perform XY axis scanning to achieve FOV (Field of View) vision through spot scanning. There are some methods to improve this problem involving the use of a galvano mirror [1], pin-hole array, etc. Therefore, in this paper we propose a method to improve a parallel mode confocal system using a micro-lens and pin-hole array in a dual microscope configuration. We made an area scan possible by using a combination MLA (Micro Lens Array) and pin-hole array, and used an objective lens to improve the light transmittance and signal-to-noise ratio. Additionally, we made it possible to change the objective lens so that it is possible to select a lens considering the reflection characteristic of the measuring object and proper magnification. We did an experiment using 5X, 2.3X objective lens, and did a calibration of height using a VLSI calibration target.

Primitive Body Model Encoding and Selective / Asynchronous Input-Parallel State Machine for Body Gesture Recognition (바디 제스처 인식을 위한 기초적 신체 모델 인코딩과 선택적 / 비동시적 입력을 갖는 병렬 상태 기계)

  • Kim, Juchang;Park, Jeong-Woo;Kim, Woo-Hyun;Lee, Won-Hyong;Chung, Myung-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Body gesture Recognition has been one of the interested research field for Human-Robot Interaction(HRI). Most of the conventional body gesture recognition algorithms used Hidden Markov Model(HMM) for modeling gestures which have spatio-temporal variabilities. However, HMM-based algorithms have difficulties excluding meaningless gestures. Besides, it is necessary for conventional body gesture recognition algorithms to perform gesture segmentation first, then sends the extracted gesture to the HMM for gesture recognition. This separated system causes time delay between two continuing gestures to be recognized, and it makes the system inappropriate for continuous gesture recognition. To overcome these two limitations, this paper suggests primitive body model encoding, which performs spatio/temporal quantization of motions from human body model and encodes them into predefined primitive codes for each link of a body model, and Selective/Asynchronous Input-Parallel State machine(SAI-PSM) for multiple-simultaneous gesture recognition. The experimental results showed that the proposed gesture recognition system using primitive body model encoding and SAI-PSM can exclude meaningless gestures well from the continuous body model data, while performing multiple-simultaneous gesture recognition without losing recognition rates compared to the previous HMM-based work.

Internal singular configuration analysis and adaptive fuzzy logic control implementatioin for a planar parallel manipulator (평면형 병렬 매니퓰레이터의 내부 특이형상 해석 및 적응 퍼지논리제어 구현)

  • Song, Nak-Yun;Cho, Whang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.81-90
    • /
    • 2000
  • Parallel manipulator is suitable for the high precise task because it than has higher stiffness, larger load capacity and more excellent precision, due to the closed-lop structure, than serial manipulator. But the controller design for parallel manipulator is difficult because the parallel manipulator has both the complexity of structure and the interference of actuators. The precision improvement of parallel manipulator using a classical linear control scheme is difficult because the parallel manipulator has the tough nonlinear characteristics. In this paper, firstly, the kinematic analysis of a parallel manipulator used at the experiments is performed so as to show the controllability. The analysis of internal singular configuration of the workspace is performed using the kinematic isotropic index so a sto show the limitation of control performance of a simple linear controller with fixed control gains. Secondly, a control scheme is designed by using an adaptive fuzzy logic controller so that active joints of the parallel manipulator track more precisely the desired input trajectory. This adaptive fuzzy logic controller so that active joints of the parallel manipulator track more precisely the desired input trajectory. This adaptive fuzzy logic controller is often used for the control of nonlinear system because it has both the inference ability and the learning ability. Lastly, the effeciency of designed control scheme is demonstrated by the real-time control experiments with IBM PC interface logic H/W and S/W of my won making. The experimental results was a success.

  • PDF

Development of a small 6-axis force/moment sensor for robot's finger (로봇 손가락용 소형 6축 힘/모멘트센서 개발)

  • 김갑순;이상호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.490-493
    • /
    • 2003
  • This paper describes the development of a small 6-axis force/moment sensor for robot's finger, which measures forces Fx. Fy, Fz, and moments Mx, My, Mz simultaneously. In order to safely grasp an unknown object using the robot's gripper, and accurately perceive the position of it in the gripper, it should measure the force in the gripping direction, the force in the gravity direction and the moments each direction. and perform the control using the measured forces and moments. Thus, the robot's gripper should be composed of 6-axis force/moment sensor that can measure forces Fx, Fy, Fz, and moments Mx, My. Mz simultaneously. In this paper, the small 6-axis force/moment sensor for measuring forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously was newly modeled using several parallel-plate beams, designed, and fabricated. The characteristic test of made sensor was performed, and the result shows that interference errors or the developed sensor are less than 3%. Thus, the developed small 6-axis force/moment sensor may be used for robot's gripper.

  • PDF

Performance of Liquid-Cooled Cold Plates for Multiple Heat Sources in a Humanoid Robot (인간형 로봇 내부의 다중 열원에 대한 수냉식 냉각판의 성능)

  • Karng, Sarng-Woo;Kim, Seo-Young;Moon, Jong-Min;Hwang, Kyu-Dae;Rhee, Gwang-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2053-2058
    • /
    • 2008
  • It was investigated thermal performances on two array types of a serial circulation and a two-way parallel circulation for six water-cooled cold plates covered with non-metallic material (polycarbonate, PC) to reduce weight of the cooling devices for humanoid robot cooling. Six cold plates attached on $10{\times}10\;mm^2$ copper base : $0.5{\times}0.5\;mm^2$ pin-finned surfaces of 1.5 mm high with 0.5 mm array spacing, was mounted on six copper heating blocks with isothermal conditions of $50{\sim}90^{\circ}C$, respectively. In order to compare thermal characteristics according to two circulation types, the surface temperatures of heating blocks and the cooling water temperatures at inlets and outlets of cold plates were measured. From the results, it was found that a two-way parallel circulation was better performance than a serial circulation in terms of total thermal resistance, total heat transfer rate, and surface temperature rises from $1^{st}$ heating block to last one for six multiple cold plates.

  • PDF