• Title/Summary/Keyword: 병렬/분산 컴퓨팅 환경

Search Result 100, Processing Time 0.029 seconds

Large-scale Spatial Reasoning using MapReduce Framework (맵리듀스 프레임워크를 이용한 대용량 공간 추론 방식)

  • Nam, Sang-Ha;Kim, In-Cheol
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.769-772
    • /
    • 2014
  • Jeopardy 퀴즈쇼와 같은 DeepQA 환경에서 인간을 대신해 컴퓨터가 효과적으로 답하기 위해서는 인물, 지리, 사건, 역사 등을 포함하는 광범위한 지식베이스와 이를 토대로 한 빠른 시공간 추론 능력이 필요하다. 본 논문에서는 대표적인 병렬 분산 컴퓨팅 환경인 하둡/맵리듀스 프레임워크를 이용하여 방향 및 위상 관계를 추론하는 효율적인 대용량의 공간 추론 알고리즘을 제시한다. 본 알고리즘에서는 하둡/맵리듀스 프레임워크의 특성을 고려하여 병렬 분산처리의 효과를 높이기 위해, 지식 분할 문제를 맵 단계에서 해결하고, 이것을 토대로 리듀스 단계에서 효과적으로 새로운 공간 지식을 유도하도록 설계하였다. 또한, 본 알고리즘은 초기 공간 지식베이스로부터 새로운 지식을 유도할 수 있는 기능뿐만 아니라 초기 공간 지식베이스의 불일치성도 미연에 감지함으로써 불필요한 지식 유도 작업을 계속하지 않도록 설계하였다. 본 연구에서는 하둡/맵리듀스 프레임워크로 구현한 대용량 공간 추론기와 샘플공간 지식베이스를 이용하여 성능 분석 실험을 수행하였고, 이를 통해 본 논문에서 제시한 공간 추론 알고리즘과 공간 추론기의 높은 성능을 확인 할 수 있었다.

A Genetic-Based Optimization Model for Clustered Node Allocation System in a Distributed Environment (분산 환경에서 클러스터 노드 할당 시스템을 위한 유전자 기반 최적화 모델)

  • Park, Kyeong-mo
    • The KIPS Transactions:PartA
    • /
    • v.10A no.1
    • /
    • pp.15-24
    • /
    • 2003
  • In this paper, an optimization model for the clustered node allocation systems in the distributed computing environment is presented. In the presented model with a distributed file system framework, the dynamics of system behavior over times is carefully thought over the nodes and hence the functionality of the cluster monitor node to check the feasibility of the current set of clustered node allocation is given. The cluster monitor node of the node allocation system capable of distributing the parallel modules to clustered nodes provides a good allocation solution using Genetic Algorithms (GA). As a part of the experimental studies, the solution quality and computation time effects of varying GA experimental parameters, such as the encoding scheme, the genetic operators (crossover, mutations), the population size, and the number of node modules, and the comparative findings are presented.

A Scheme on High-Performance Caching and High-Capacity File Transmission for Cloud Storage Optimization (클라우드 스토리지 최적화를 위한 고속 캐싱 및 대용량 파일 전송 기법)

  • Kim, Tae-Hun;Kim, Jung-Han;Eom, Young-Ik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8C
    • /
    • pp.670-679
    • /
    • 2012
  • The recent dissemination of cloud computing makes the amount of data storage to be increased and the cost of storing the data grow rapidly. Accordingly, data and service requests from users also increases the load on the cloud storage. There have been many works that tries to provide low-cost and high-performance schemes on distributed file systems. However, most of them have some weaknesses on performing parallel and random data accesses as well as data accesses of frequent small workloads. Recently, improving the performance of distributed file system based on caching technology is getting much attention. In this paper, we propose a CHPC(Cloud storage High-Performance Caching) framework, providing parallel caching, distributed caching, and proxy caching in distributed file systems. This study compares the proposed framework with existing cloud systems in regard to the reduction of the server's disk I/O, prevention of the server-side bottleneck, deduplication of the page caches in each client, and improvement of overall IOPS. As a results, we show some optimization possibilities on the cloud storage systems based on some evaluations and comparisons with other conventional methods.

A Scheduling Algorithm for Parsing of MPEG Video on the Heterogeneous Distributed Environment (이질적인 분산 환경에서의 MPEG비디오의 파싱을 위한 스케줄링 알고리즘)

  • Nam Yunyoung;Hwang Eenjun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.12
    • /
    • pp.673-681
    • /
    • 2004
  • As the use of digital videos is getting popular, there is an increasing demand for efficient browsing and retrieval of video. To support such operations, effective video indexing should be incorporated. One of the most fundamental steps in video indexing is to parse video stream into shots and scenes. Generally, it takes long time to parse a video due to the huge amount of computation in a traditional single computing environment. Previous studies had widely used Round Robin scheduling which basically allocates tasks to each slave for a time interval of one quantum. This scheduling is difficult to adapt in a heterogeneous environment. In this paper, we propose two different parallel parsing algorithms which are Size-Adaptive Round Robin and Dynamic Size-Adaptive Round Robin for the heterogeneous distributed computing environments. In order to show their performance, we perform several experiments and show some of the results.

A Consideration for Management of Hardware Design Data (하드웨어 설계 데이터 관리에 관한 고찰)

  • Lee, Jae-Cheol;Kim, Yong-Yeon
    • Electronics and Telecommunications Trends
    • /
    • v.12 no.2 s.44
    • /
    • pp.119-126
    • /
    • 1997
  • 대규모 시스템의 개발에 있어서 하드웨어 설계 데이터가 방대해짐에 따라 데이터의 형상 관리가 필요하게 되었고, 보다 효율적인 설계 관리하에서 신뢰성 있는 하드웨어 설계용 라이브러리를 설계하기 위해서는 데이터 관리 도구가 요구된다. 고속병렬컴퓨터 시스템 개발을 위한 하드웨어 설계 환경에서는 설계 데이터의 효율적인 형상 관리를 위하여 TDM(Team Design Manager) 설계 관리 도구를 적용하였다. 본 고에서는 여러 워크스테이션(머신)들로 구성되어 클라이언트/서버 컴퓨팅을 지원하는 분산 하드웨어 환경에서의 설계 데이터 형상 관리환경 및 하드웨어 설계 데이터의 관리기법에 관하여 고찰하였다.

A Study on the Design of Ambari Service for Lustre Parallel File System Auto Provisioning (Lustre 병렬파일시스템 오토 프로비저닝을 위한 Ambari 서비스 설계에 관한 연구)

  • Kwak, Jae-Hyuck;Kim, Sangwan;Byun, Eunkyu;Nam, Dukyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.45-47
    • /
    • 2017
  • 하둡은 대표적인 빅데이터 처리 프레임워크로 널리 사용되고 있지만 하둡 어플리케이션은 고성능컴퓨팅 환경에서 하둡 분산파일시스템이 아닌 러스터 병렬 파일시스템 위에서도 수행될 수 있다. 그러나 이를 위해서 추가적으로 러스터 병렬파일시스템을 구축하고 관리하는 것은 시간 소모적인 업무가 될 수 있다. 본 연구는 러스터 병렬파일시스템의 오토 프로비저닝을 위한 암바리 서비스의 설계 방안에 대해서 제안한다. 암바리는 하둡 클러스터의 프로비저닝, 관리, 모니터링을 위한 운영 관리 프레임워크이며 운영자의 필요에 따라서 확장할 수 있는 서비스 프레임워크를 제공한다. 본 연구에서는 암바리를 통해서 러스터 병렬파일시스템을 오토 프로비저닝하고 관리하기 위한 확장 서비스를 설계하였으며 서비스를 위한 컴포넌트와 각 컴포넌트별 중요한 기능 사항에 대해서 논하였다.

Molecular Docking System using Parallel GPU (병렬 GPU를 이용한 분자 도킹 시스템)

  • Park, Sung-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.12
    • /
    • pp.441-448
    • /
    • 2008
  • The molecular docking system needs a large amount of computation and requires super-computing power. Since the experiment requires a large amount of time, the experiment is conducted in the distributed environment or in the grid environment. Recently, researches on using parallel GPU of far higher performance than that of CPU in scientific computing have been very actively conducted. CUDA is an open technique by which a parallel GPU programming is made possible. This study proposes the molecular docking system using CUDA. It also proposes algorithm that parallels energy-minimizing-computation. To verify such experiments, this study conducted a comparative analysis on the time required for experimenting molecular docking in general CPU and the time and performance of the parallel GPU-based molecular docking which is proposed in this study.

Performance analysis of global shared file system at 10G WAN (10G WAN 환경에서 글로벌 공유파일시스템 성능 분석)

  • Woo, Joon;Choi, Yun-Keun;Jang, Ji-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.187-190
    • /
    • 2015
  • 지역적으로 분산되어 있는 PLSI 연동 자원 간 사용자 작업 데이터의 원활한 공유을 위한 글로벌 공유파일시스템은 통합 슈퍼컴퓨팅 서비스의 핵심 구성요소 중의 하나이다. 본 연구에서는 10Gbps급 WAN 전용망 환경에서 공개 소프트웨어인 Lustre 병렬파일시스템 기반의 글로벌 공유파일시스템의 성능을 측정 및 분석하여 차세대 글로벌 공유파일시스템 구축을 위한 기반을 마련하고자 한다.

Implementation and Performance Analysis of Hadoop MapReduce over Lustre Filesystem (러스터 파일 시스템 기반 하둡 맵리듀스 실행 환경 구현 및 성능 분석)

  • Kwak, Jae-Hyuck;Kim, Sangwan;Huh, Taesang;Hwang, Soonwook
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.8
    • /
    • pp.561-566
    • /
    • 2015
  • Hadoop is becoming widely adopted in scientific and commercial areas as an open-source distributed data processing framework. Recently, for real-time processing and analysis of data, an attempt to apply high-performance computing technologies to Hadoop is being made. In this paper, we have expanded the Hadoop Filesystem library to support Lustre, which is a popular high-performance parallel distributed filesystem, and implemented the Hadoop MapReduce execution environment over the Lustre filesystem. We analysed Hadoop MapReduce over Lustre by using Hadoop standard benchmark tools. We found that Hadoop MapReduce over Lustre execution has a performance 2-13 times better than a typical Hadoop MapReduce execution.

Efficient Executions of MPI Parallel Programs in Memory-Centric Computer Architecture (메모리 중심 컴퓨터 구조에서 MPI 병렬 프로그램의 효율적인 수행)

  • Lee, Je-Man;Lee, Seung-Chul;Shin, Dong-Ha
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.257-258
    • /
    • 2019
  • 본 논문에서는 "프로세서 중심 컴퓨터 구조"에서 개발된 MPI 병렬 프로그램을 수정하지 않고 "메모리 중심 컴퓨터 구조"에서 더 효율적으로 수행시키는 기술을 제안한다. 본 연구에서 제안하는 기술은 메모리 중심 컴퓨터 구조가 가지는 "빠른 대용량 공유 메모리" 특징을 이용하여 MPI 표준 라이브러리가 수행하는 네트워크 통신을 통한 느린 데이터 전달을 공유 메모리를 통한 빠른 데이터 전달로 대체하여 효율성을 얻는다. 본 연구에서 제안한 기술은 도커 가상화 기술을 사용한 분산 시스템 환경에서 MC-MPI-LIB 라이브러리 및 MC-MPI-SIM 시뮬레이터로 구현되었으며 다수의 MPI 병렬 프로그램으로 시험 수행하여 효율성이 있음을 보였다.

  • PDF