• Title/Summary/Keyword: 변형영역

Search Result 1,194, Processing Time 0.027 seconds

Beach Deformation Caused by Typhoon Chaba in 2016 Along the Manseongri Coast Related Coastal Improvement Project (연안정비사업이 수행된 만성리 해수욕장에서 2016년 태풍 차바에 의한 해빈변화)

  • Park, Il Heum;Park, Wan-Gyu;Jeong, Seung Myong;Kang, Tae-Soon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.710-718
    • /
    • 2017
  • After Typhoon Chaba (No.18, 2016) collided with Manseongri Beach, a coastal improvement project was carried out since strong external forces such as waves, storm surges and wave-induced currents were observed to cause beach deformation. The shoreline, beach area and beach volume were periodically surveyed. On the basis of this field data, the beach deformation that occurred at Manseongri Beach has been formally described. Over three months after beach nourishment work began, the beaches were gradually stabilized in terms of natural external forces. However, this stabilization was interrupted by Typhoon Chaba. After two months of typhoon weather, the beach returned to a stable state and no changes were observed until one year after the beach recovery work. Just after the typhoon hit, the shoreline receded from the northern side, where no reduction of external forces occurred, while the rear beach area submerged by breakwater advanced. Also, the beach volume decreased by $3,395m^3$ after the typhoon, due to erosion that occurred on the northern beach, with deposition taking place on the southern backshore area. Therefore, it has been concluded that the coastal improvement project undertaken at Manseongri Beach has significantly contributed to conservation in areas of wave-dominant sediment transport.

Composition and Evolution of Lithosphere Beneath the Jeju Island Region (I): A Review (제주도 암석권의 성분과 진화(I): 리뷰)

  • Yang, Kyounghee
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.261-281
    • /
    • 2016
  • Our knowledge of the lithosphere beneath the Korean Peninsula has been improved through petrologic and geochemical studies of upper mantle xenoliths hosted by Quaternary intraplate alkali basalts from Jeju Island. The xenoliths are mostly spinel lherzolites, accompanied by subordinate harzburgite and pyroxenites. The mantle xenoliths represent residual mantle material showing textural and geochemical evidence for at least a three-stage evolution, fractional partial melting, recrystallization, and metasomatism. Their composition primarily controlled by early fractional melt extraction and porphyroclastic and mylonitic fabrics formed in a shear-dominated environment, which was subsequently modified by residual slab-derived fluids (or melts). Modal metasomatic products occur as both anhydrous phase(orthopyroxene) and hydrous phase (phlogopite). Late-stage orthopyroxene is more common than phlogopite. However, chemical equilibrium is evident between the primary and secondary orthopyroxene, implying that the duration of post-metasomatic high temperatures enabled complete resetting/reequilibration of the mineral compositions. The metasomatic enrichment pre-dates the host Jeju Quaternary magmatism, and a genetic relationship with the host magmas is considered unlikely. Following enrichment in the peridotite protolith in the mantle wedge, the upper mantle beneath proto-Jeju Island was transformed from a subarc environment to an intraplate environment. The Jeju peridotites, representing old subarc fragments, were subsequently transported to the surface, incorporated into ascending Quaternary intraplate alkali basalt. The result of this study implies that long term material transfer in the transformation of geotectonic setting from a subarc to intraplate may have played a significant role in the evolution of lithospheric mantle, resulting in the enriched mantle domains, such as EM I or EM II in the lithospheric mantle beneath East Asia.

Hand Motion Recognition Algorithm Using Skin Color and Center of Gravity Profile (피부색과 무게중심 프로필을 이용한 손동작 인식 알고리즘)

  • Park, Youngmin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.411-417
    • /
    • 2021
  • The field that studies human-computer interaction is called HCI (Human-computer interaction). This field is an academic field that studies how humans and computers communicate with each other and recognize information. This study is a study on hand gesture recognition for human interaction. This study examines the problems of existing recognition methods and proposes an algorithm to improve the recognition rate. The hand region is extracted based on skin color information for the image containing the shape of the human hand, and the center of gravity profile is calculated using principal component analysis. I proposed a method to increase the recognition rate of hand gestures by comparing the obtained information with predefined shapes. We proposed a method to increase the recognition rate of hand gestures by comparing the obtained information with predefined shapes. The existing center of gravity profile has shown the result of incorrect hand gesture recognition for the deformation of the hand due to rotation, but in this study, the center of gravity profile is used and the point where the distance between the points of all contours and the center of gravity is the longest is the starting point. Thus, a robust algorithm was proposed by re-improving the center of gravity profile. No gloves or special markers attached to the sensor are used for hand gesture recognition, and a separate blue screen is not installed. For this result, find the feature vector at the nearest distance to solve the misrecognition, and obtain an appropriate threshold to distinguish between success and failure.

Development of Fender Segmentation System for Port Structures using Vision Sensor and Deep Learning (비전센서 및 딥러닝을 이용한 항만구조물 방충설비 세분화 시스템 개발)

  • Min, Jiyoung;Yu, Byeongjun;Kim, Jonghyeok;Jeon, Haemin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.28-36
    • /
    • 2022
  • As port structures are exposed to various extreme external loads such as wind (typhoons), sea waves, or collision with ships; it is important to evaluate the structural safety periodically. To monitor the port structure, especially the rubber fender, a fender segmentation system using a vision sensor and deep learning method has been proposed in this study. For fender segmentation, a new deep learning network that improves the encoder-decoder framework with the receptive field block convolution module inspired by the eccentric function of the human visual system into the DenseNet format has been proposed. In order to train the network, various fender images such as BP, V, cell, cylindrical, and tire-types have been collected, and the images are augmented by applying four augmentation methods such as elastic distortion, horizontal flip, color jitter, and affine transforms. The proposed algorithm has been trained and verified with the collected various types of fender images, and the performance results showed that the system precisely segmented in real time with high IoU rate (84%) and F1 score (90%) in comparison with the conventional segmentation model, VGG16 with U-net. The trained network has been applied to the real images taken at one port in Republic of Korea, and found that the fenders are segmented with high accuracy even with a small dataset.

A Numerical Study on the Step 0 Benchmark Test in Task C of DECOVALEX-2023: Simulation for Thermo-Hydro-Mechanical Coupled Behavior by Using OGS-FLAC (DECOVALEX-2023 Task C 내 Step 0 벤치마크 수치해석 연구: OGS-FLAC을 활용한 열-수리-역학 복합거동 수치해석)

  • Kim, Taehyun;Park, Chan-Hee;Lee, Changsoo;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.610-622
    • /
    • 2021
  • The DECOVALEX project is one of the representative international cooperative projects to enhance the understanding of the complex Thermo-Hydro-Mechanical-Chemical(THMC) coupled behavior in the high-level radioactive waste disposal system based on the numerical simulation. DECOVALEX-2023 is the current phase consisting of 7 tasks, and Task C aims to model the THM coupled behavior in the disposal system based on the Full-scale Emplacement (FE) experiment at the Mont-Terri underground rock laboratory. This study performs the numerical simulation based on the OGS-FLAC developed for the current study. In the numerical model, we emplaced the heater with constant power horizontally based on the FE experiment and monitored the pressure development, temperature increase, and mechanical deformation at the specific monitoring points. We monitored the capillary pressure as the primary effect inducing the flow in the buffer system, and thermal stress and pressurization were dominant in the surrounding rocks' area. The results will also be compared and validated with the other participating groups and the experimental data further.

Current Status of X-ray CT Based Non Destructive Characterization of Bentonite as an Engineered Barrier Material (공학적방벽재로서 벤토나이트 거동의 X선 단층촬영 기반 비파괴 특성화 현황)

  • Diaz, Melvin B.;Kim, Joo Yeon;Kim, Kwang Yeom;Lee, Changsoo;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.400-414
    • /
    • 2021
  • Under high-level radioactive waste repository conditions, bentonite as an engineered barrier material undergoes thermal, hydrological, mechanical, and chemical processes. We report the applications of X-ray Computed Tomography (CT) imaging technique on the characterization and analysis of bentonite over the past decade to provide a reference of the utilization of this technique and the recent research trends. This overview of the X-ray CT technique applications includes the characterization of the bentonite either in pellets or powder form. X-ray imaging has provided a means to extract grain information at the microscale and identify crack networks responsible for the pellets' heterogeneity. Regarding samples of pellets-powder mixtures under hydration, X-ray CT allowed the identification and monitoring of heterogeneous zones throughout the test. Some results showed how zones with pellets only swell faster compared to others composed of pellets and powder. Moreover, the behavior of fissures between grains and bentonite matrix was observed to change under drying and hydrating conditions, tending to close during the former and open during the latter. The development of specializing software has allowed obtaining strain fields from a sequence of images. In more recent works, X-ray CT technique has served to estimate the dry density, water content, and particle displacement at different testing times. Also, when temperature was added to the hydration process of a sample, CT technology offered a way to observe localized and global density changes over time.

A Thoracic Spine Segmentation Technique for Automatic Extraction of VHS and Cobb Angle from X-ray Images (X-ray 영상에서 VHS와 콥 각도 자동 추출을 위한 흉추 분할 기법)

  • Ye-Eun, Lee;Seung-Hwa, Han;Dong-Gyu, Lee;Ho-Joon, Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.1
    • /
    • pp.51-58
    • /
    • 2023
  • In this paper, we propose an organ segmentation technique for the automatic extraction of medical diagnostic indicators from X-ray images. In order to calculate diagnostic indicators of heart disease and spinal disease such as VHS(vertebral heart scale) and Cobb angle, it is necessary to accurately segment the thoracic spine, carina, and heart in a chest X-ray image. A deep neural network model in which the high-resolution representation of the image for each layer and the structure converted into a low-resolution feature map are connected in parallel was adopted. This structure enables the relative position information in the image to be effectively reflected in the segmentation process. It is shown that learning performance can be improved by combining the OCR module, in which pixel information and object information are mutually interacted in a multi-step process, and the channel attention module, which allows each channel of the network to be reflected as different weight values. In addition, a method of augmenting learning data is presented in order to provide robust performance against changes in the position, shape, and size of the subject in the X-ray image. The effectiveness of the proposed theory was evaluated through an experiment using 145 human chest X-ray images and 118 animal X-ray images.

Metamodeling Construction for Generating Test Case via Decision Table Based on Korean Requirement Specifications (한글 요구사항 기반 결정 테이블로부터 테스트 케이스 생성을 위한 메타모델링 구축화)

  • Woo Sung Jang;So Young Moon;R. Young Chul Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.9
    • /
    • pp.381-386
    • /
    • 2023
  • Many existing test case generation researchers extract test cases from models. However, research on generating test cases from natural language requirements is required in practice. For this purpose, the combination of natural language analysis and requirements engineering is very necessary. However, Requirements analysis written in Korean is difficult due to the diverse meaning of sentence expressions. We research test case generation through natural language requirement definition analysis, C3Tree model, cause-effect graph, and decision table steps as one of the test case generation methods from Korean natural requirements. As an intermediate step, this paper generates test cases from C3Tree model-based decision tables using meta-modeling. This method has the advantage of being able to easily maintain the model-to-model and model-to-text transformation processes by modifying only the transformation rules. If an existing model is modified or a new model is added, only the model transformation rules can be maintained without changing the program algorithm. As a result of the evaluation, all combinations for the decision table were automatically generated as test cases.

Evaluation of Traffic Vibration Effect for Utilization of Abandoned Mine Openings (휴·폐광산 채굴 공동 활용을 위한 교통 진동 영향 평가)

  • Hyeon-Woo Lee;Seung-Joong Lee;Sung-Oong Choi
    • Tunnel and Underground Space
    • /
    • v.33 no.2
    • /
    • pp.95-107
    • /
    • 2023
  • In this study, the effect of repeated traffic vibration on the long-term stability of mine openings is analyzed for re-utilization of abandoned mine galleries. The research mine in this study is an underground limestone mine which is developed by room-and-pillar mining method, and a dynamic numerical analysis is performed assuming that the research mine will be utilized as a logistics warehouse. The actual traffic vibration generated by the mining vehicles is measured directly, and its waveform is used as input data for dynamic numerical analysis, As a results of dynamic numerical analysis, after 20,000 repetitions of traffic vibration, the mine openings is analyzed to be stable, but an increase in the maximum principal stress and an additional area of plastic zone are observed in the analysis section. As shown in the changes of displacement, volumetric strain, and maximum principal stress which are measured at the mine opening walls. It is confirmed that if the repeated traffic vibration is continuously applied, the instability of the mine openings can be increased. Authors expect that the results of this study can be used as a reference for basic study on utilization of abandoned mine.

Function of 27-Hydroxycholesterol in Various Tissues and Diseases (다양한 조직 및 질병에서 27-하이드록시콜레스테롤의 역할 및 기전 고찰)

  • Shim, Wan-Seog;Lee, Chanhee;Azamov, Bakhovuddin;Kim, Koanhoi;Lee, Dongjun;Song, Parkyong
    • Journal of Life Science
    • /
    • v.32 no.3
    • /
    • pp.256-262
    • /
    • 2022
  • Oxysterols are oxygenated metabolites of cholesterol generated by serial enzymatic reactions during bile acid synthesis. Similar to cholesterol, oxysterols move rapidly to the intracellular region and modulate various cellular processes, such as immune cell responses, lipid metabolism, and cholesterol homeostasis. Different nuclear transcription factors, such as glucocorticoid, estrogen, and liver X receptors, can be modulated by oxysterols in multiple tissues. The most abundant oxysterol, 27-hydroxycholesterol (27-OHC), is a well-known selective modulator that can either activate or suppress estrogen receptor activity in a tissue-specific manner. The contribution of 27-OHC in atherosclerosis development is apparent because a large amount of it is found in atherosclerotic plaques, accelerating the transformation of macrophages into foam cells that uptake extracellular modified lipids. According to previous studies, however, there are opposing opinions about how 27-OHC affects lipid and cholesterol metabolism in metabolic organs, including the liver and adipose tissue. In particular, the effects of 27-OHC on lipid metabolism are entirely different between in vitro and in vivo conditions, suggesting that understanding the physiology of this oxysterol requires a sophisticated approach. This review summarizes the potential effects of 27-OHC in atherosclerosis and metabolic syndromes with a special discussion of its role in metabolic tissues.