• Title/Summary/Keyword: 변형률상수

Search Result 74, Processing Time 0.021 seconds

Determination Method of Ramberg-Osgood Constants for Leak Before Break Evaluation (파단전 누설 평가를 위한 Ramberg - Osgood 상수 결정법)

  • Bae, Kyung Dong;Ryu, Ho Wan;Kim, Yun Jae;Kim, Jin Weon;Kim, Jong Sung;Oh, Young Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.645-652
    • /
    • 2015
  • In this study, a method for determining Ramberg-Osgood constants for leak-before-break evaluation was investigated. The Ramberg-Osgood constants were calculated for SA312, TP316, and SA-508 Gr.1a in an operating temperature of $316^{\circ}C$. Incremental plasticity, using stress-strain data obtained from experiment, and deformation plasticity, using the Ramberg-Osgood constants, were considered in a finite element analysis. Using incremental plasticity and deformation plasticity, J-integrals and crack opening displacement values were calculated and compared. By comparing the results of incremental plasticity and deformation plasticity, a suitable method for determining Ramberg-Osgood constants for leak-before-break evaluation was confirmed.

Experimental Study on the Elastic Constants of A Transversely Isotropic Rock by Multi-Specimen Compression Tests Report 1 - Focus on Data Analysis (다중시험편 시험에 의한 평면이방성 암석의 탄성상수 분석연구 제 1 보 - 자료해석을 중심으로)

  • Park, Chul-Whan;Park, Chan;Synn, Joong-Ho;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.20 no.6
    • /
    • pp.455-464
    • /
    • 2010
  • The variations of the uniaxial compressive strength, the strains and the elastic constants with respect to the angle of anisotropy are analyzed in order to investigate the characteristics of a transversely isotropic rock experimentally. Total 35 specimens of 7 different angles from a large block of rhyolite presenting the flow structure obviously are used in tests. This study is composed of two reports; the elastic constants are mainly analyzed for the every individual angle in the report No. 1 and they will be discussed synthetically in the report No. 2. From the specimens of 0 and 90 degree, 4 independent elastic constants which can directly be obtained without the help of any other suggested equations, may be referred to the true values. Data variation in the strain measurements differs on the angle is analyzed. That of small angle specimens tends higher than that of large angle specimens. The relation of apparent Young’s modulus and angle is found to be M- or U-shaped. For small angle specimens, Saint-Venant approximation cannot be applied successfully on account of showing the non-monotonous increase, and E1 is analyzed out of the true value range. In the specimen of $\phi$ = 75, the deviation of strain measurement and strength are smallest and 4 all constants are analyzed in the true value range. Therefore, specimen of the angle of around 75 may become preferable if only one specimen should be used in test of a transversely isotropic rock.

Behavior Characteristics of Water Supply Pipeline Due to Freezing Temperature (동결온도가 상수도관의 거동에 미치는 영향)

  • Shin, Eun Chul;Ryu, Byung Hyun;Kang, Hyoun Hoi;Hwnag, Soon Gab
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.1-10
    • /
    • 2014
  • This paper presents the results of a field pilot test about deformation of water supply pipelines due to freezing temperature. There is a difference between for frost heaving load to act on the water supply pipelines. If the Marston-Spangler theory is only considered for the frost heaving load to act on the water supply pipeline, it is likely to deviate from the safety of the water supply pipeline, strains of the water supply pipeline show a tendency of smaller value than the value of numerical analysis.

Measurement of Dynamic Strains on Composite T-Joint Subjected to Hydrodynamic Ram Using PVDF Sensors (PVDF 센서를 이용한 수압램 하중을 받는 복합재 T-Joint의 동적 변형률 측정)

  • Go, Eun-Su;Kim, Dong-Geon;Kim, In-Gul;Woo, Kyeongsik;Kim, Jong-Heon
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.238-245
    • /
    • 2018
  • The hydrodynamic ram (HRAM) phenomenon is one of the main types of ballistic battle damages of a military aircraft and has great importance to airframe survivability design. The HRAM effect occurs due to the interaction between the fluid and structure, and damage can be investigated by measuring the pressure of the fluid and the dynamic strains on the structure. In this paper, HRAM test of a composite T-Joint was performed using a ram simulator which can generate HRAM pressure. In addition, calibration tests of PVDF sensor were performed to determine the circuit capacitance and time constant of the measurement system. The failure behavior of the composite T-Joint due to HRAM pressure was examined using the strain gauges and a PVDF sensor which were attached to the surface of the composite T-Joint.

Numerical Assessment of Tensile Strain Capacity for X80 Line Pipe Using GTN Model (GTN 모델을 이용한 X80 라인파이프의 인장 변형성능 해석)

  • Yoon, Young-Cheol;Kim, Ki-Seok;Lee, Jae Hyuk;Cho, Woo-Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.979-990
    • /
    • 2016
  • This study presents a nonlinear finite element procedure involving a phenomenological model to validate the tensile strain capacity of the X80 line pipe developed for the strain-based design purpose. The procedure is based on the Gurson-Tvergaard-Needleman (GTN) model, which models nucleation, growth and coalescence of void volume fraction occurred inside a metal. In this study, the user-defined material module (UMAT) is implemented in the commercial finite element platform ABAQUS and is applied to the nonlinear damage analysis of steel specimens. Material parameters for the nonlinear damage analysis of base and weld metals are calibrated from numerical simulations for the tensile tests of round bar and full thickness specimens. They are then employed in the numerical simulations for SENT (Single Edge Notch Tension) test and CWPT (Curved Wide Plate Test) and in the simulations, the tensile strain capacities are naturally evaluated. Comparison of the numerical results with the experimental results and the conventional empirical formulae shows that the proposed numerical procedure can fairly well predict the tensile strain capacity of X80 line pipe. So, it is readily expected to be effectively applied to the strain-based design procedure.

Development of Optical Frequency Modulated Fiber Optic Interferometric Sensor (광주파수 변조 광섬유 간섭형 센서의 개발)

  • Kwon, Il-Bum;Kim, Chi-Yeop;Kim, Min-Soo;Lee, Wang-Joo
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.163-170
    • /
    • 2000
  • Optical frequency modulated fiber optic interferometric sensor was developed to sense the mechanical quantities, such as displacement, strain, force etc. It has been difficult to distinguish whether the increase of the mechanical quantities or the decrease of the quantities measured by the conventional fiber optic interferometric sensors because their signals only have a sinusoidal wave pattern related to the change of mechanical quantities. In this study, in order to measure the mechanical quantifies with the distinction of the changing direction of the quantities, the fiber of optic Michelson interferometric sensor was simply constructed by the laser light modulated with saw tooth wave pattern. The output signal of the sensor was controlled as the sinusoidal wave. The signal processing was based on the counting of the wave number of the output signal during constant time duration. The strain was determined by the cumulative value of the wave number producted by the gage factor. In order to verify the strain measurement capability of this sensor, the strain increase-decrease test was performed by universal testing machine installed with the aluminum specimen bonded with the fiber optic sensor and electrical strain gage. In the result of the test, the strain from the fiber optic sensor had a good agreement with the values from the electrical strain gage.

  • PDF

Evaluation of Field Nonlinear Modulus of Subgrnde Soils Using Repetitive Static Plate Bearing Load Test (반복식 평판재하시험을 이용한 노상토의 현장 변형계수 평가)

  • Kim Dong-Soo;Seo Won-Seok;Kweon Gi-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.67-79
    • /
    • 2005
  • The field plate load test has a good potential for determining modulus since it measures both plate pressure and settlement. Conventionally the modulus has been assumed to be a constant secant value defined from the settlement of the plate at a given load intensity. A constant modulus (modulus of subgrade reaction, k), however, may not be a representative value of subgrade soil under working load. Field strain(o. stress)-dependent modulus characteristics of subgrade soils, at relatively low to intermediate strains, are important in the pavement design. In this study, the field strain dependent moduli of subgrade soils were obtained using cyclic plate load test. Testing procedure and data reduction method are proposed. The field crosshole and laboratory resonant column tests were also performed to determine field nonlinear modulus at $0.001\%\;to\;0.1\%$ strains, and the modulus values and nonlinear trends are compared to those obtained by cyclic plate load tests. Both modulus values match relatively well when the different state of stress between two tests was considered, and the applicability of field cyclic plate load test for determining nonlinear modulus values of subgrade soils is verified.

A Model Study on Deformability of A Transversely Isotropic Rock (평면이방성 암석의 변형특성 모델연구)

  • Park, Chul-Whan;Park, Eui-Seob;Park, Chan
    • Tunnel and Underground Space
    • /
    • v.18 no.4
    • /
    • pp.252-262
    • /
    • 2008
  • In the uniaxial compressive test of a single specimen of transversely isotropic rock, its 5 independent elastic constants can not be defined since maximum 4 independent strain measurements are available theoretically. In order to solve this problem, one equation proposed by Saint Venant in 19C and confirmed by Lekhnitskii through the test experiences has been used for long time. Accordign to authors' experiences, however, this equation turned out to give erroneous elastic constants in some cases. Three new equations are suggested and their compatibilities are discussed in this paper. As the results of the analyses of the models, Lekhnitskii's suggested equation is effective for the specimen with the high dip angle whereas it results in the large erred output for that with dip angle less than $25{\sim}30$. It was found that the effectivenesses of three suggested equations and their compatibilities are subject to the dip angle and not to the amounts of elastic constants. Guide map to the selection of the compatible one of those suggested equations is presented as a result of the study.

The Characteristic Test for Gage Factors of Strain Gages in Cryogenic Environment (극저온 환경에서 스트레인 게이지의 게이지상수 및 변형률 측정에 관한 연구)

  • 김갑순;주진원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2205-2213
    • /
    • 1993
  • The characteristic test for gage factors of temperature self-compensated strain gages at cryogenic temperature is presented. By joining the international round robin test on electrical strain gages at cryogenic temperatures, the gage factors of three kinds of widely-used strain gages are obtained at the room temperature, the temperatures of liquid nitrogen and liquid helium. The calibration system which produce precise bending strain is by mechanical loading at cryogenic temperature. This paper also presents the creep characteristic of strain gages at maximum strain level.