• Title/Summary/Keyword: 변형률기반

Search Result 243, Processing Time 0.024 seconds

Development and Evaluation of RANS based Turbulence Model for Viscoelastic Fluid (점탄성 유체해석용 RANS 기반 난류 모델 개발 및 검증)

  • Ro, Kyoung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.545-550
    • /
    • 2017
  • When the systolic blood pressure is high, intermittent turbulence in blood flow appears in the aorta and carotid artery with stenosis during the systolic period. The turbulent blood flow is difficult to analyze using the Newtonian turbulence model due to the viscous characteristics of blood flow. As the shear rate is increased, the blood viscosity decreases by the viscoelastic properties of blood and a drag reduction phenomenon occurs in turbulent blood flow. Therefore, a new non-Newtonian turbulent model is required for viscoelastic fluid and hemodynamics. The main aims of this study were to develop a non-Newtonian turbulence model using the drag reduction phenomenon based on the standard $k-{\varepsilon}$ turbulent model for a general non-Newtonian fluid. This was validated with the experimental data and has a good tendency for non-Newtonian turbulent flow. In addition, the computation time and resources were lower than those of the low Reynolds number turbulent model. A modified turbulent model was used to analyze various turbulent blood flows.

3D Object Restoration and Data Compression Based on Adaptive Simplex-Mesh Technique (적응 Simplex-Mesh 기술에 기반한 3차원 물체 복원과 자료 압축)

  • 조용군
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.436-443
    • /
    • 1999
  • Most of the 3D object reconstruction techniques divide the object into multiplane and approximate the surfaces of the object. The Marching Cubes Algorithm which initializes the mesh structure using a given isovalue. and Delaunay Tetrahedrisation are widely used. Deformable models are well-suited for general object reconstruction because they make little assumptions about the shape to recover and they can reconstruct objects *om various types of datasets. Now, many researchers are studying the reconstruction systems based on a deformable model. In this paper, we propose a novel method for reconstruction of 3D objects. This method, for a 3D object composed of curved planes, compresses the 3D object based on the adaptive simplexmesh technique. It changes the pre-defined mesh structure, so that it may approach to the original object. Also, we redefine the geometric characteristics such as curvatures. As results of simulations, we show reconstruction of the original object with high compression and concentration of vertices towards parts of high curvature in order to optimize the shape description.

  • PDF

Crowd Density Estimation with Multi-class Adaboost in elevator (다중 클래스 아다부스트를 이용한 엘리베이터 내 군집 밀도 추정)

  • Kim, Dae-Hun;Lee, Young-Hyun;Ku, Bon-Hwa;Ko, Han-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.7
    • /
    • pp.45-52
    • /
    • 2012
  • In this paper, an crowd density in elevator estimation method based on multi-class Adaboost classifier is proposed. The SOM (Self-Organizing Map) based conventional methods have shown insufficient performance in practical scenarios and have weakness for low reproducibility. The proposed method estimates the crowd density using multi-class Adaboost classifier with texture features, namely, GLDM(Grey-Level Dependency Matrix) or GGDM(Grey-Gradient Dependency Matrix). In order to classify into multi-label, weak classifier which have better performance is generated by modifying a weight update equation of general Adaboost algorithm. The crowd density is classified into four categories depending on the number of persons in the crowd, which can be 0 person, 1-2 people, 3-4 people, and 5 or more people. The experimental results under indoor environment show the proposed method improves detection rate by about 20% compared to that of the conventional method.

Revision of Modified Cam Clay Failure Surface Based on the Critical State Theory (한계 상태 기반 수정 Modified Cam Clay 파괴면)

  • Woo, Sang Inn
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.4
    • /
    • pp.5-15
    • /
    • 2020
  • This paper proposes a revised Modified Cam Clay type failure surface based on the critical state theory. In the plane of the mean effective and von Mises stresses, the original Modified Cam Clay model has an elliptic failure surface which leads the critical-state mean effective stress to be always half of the pre-consolidation mean effective stress without hardening and evolution rules. This feature does not agree with the real mechanical response of clay. In this study, the preconsolidation mean effective stress only reflects the consolidation history of the clay whereas the critical state mean effective stress only relies on the currenct void ratio of clay. Therefore, the proposed failure surface has a distorted elliptic shape without any fixed ratio between the preconsolidation and critical state mean effective stresses. Numerical simulations for various clays using failure surfaces as yield surface provide mechanical responses similar to the experimental data.

QoS Adaptive Flow based Active Queue Management Algorithm and Performance Analysis (QoS 적응형 플로우 기반 Active Queue Management 알고리즘 및 성능분석)

  • Kang, Hyun-Myoung;Choi, Hoan-Suk;Rhee, Woo-Seop
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.3
    • /
    • pp.80-91
    • /
    • 2010
  • Due to the convergence of broadcasting and communications, IPTV services are spotlighted as the that next-generation multimedia services. IPTV services should have functionality such as unlimited channel capacity, extension of media, QoS awareness and are required increasing traffic and quality control technology to adapt the attributes of IPTV service. Consequently, flow based quality control techniques are needed. Therefore, many studies for providing Internet QoS are performed at IETF (Internet Engineering Task Force). As the buffer management mechanism among IP QoS methods, active queue management method such as RED(Random Early Detection) and modified RED algorithms have proposed. However, these algorithms have difficulties to satisfy the requirements of various Internet user QoS. Therefore, in this paper we propose the Flow based AQM(Active Queue Management) algorithm for the multimedia services that request various QoS requirements. The proposed algorithm can converge the packet loss ratio to the target packet loss ratio of required QoS requirements. And we present a performance evaluation by the simulations using the ns-2.

Dynamic Task Scheduling for 3D Torus Multicomputer Systems (3차원 토러스 구조를 갖는 멀티컴퓨터에서의 동적 작업 스케줄링 알고리즘)

  • Choo, Hyun-Seung;Youn, Hee-Yong;Park, Gyung-Leen
    • The KIPS Transactions:PartA
    • /
    • v.8A no.3
    • /
    • pp.245-252
    • /
    • 2001
  • Multicomputer systems achieve high performance by utilizing a number of computing nodes. Multidimensional meshes have become popular as multicomputer architectures due to their simplicity and efficiency. In this paper we propose an efficient processor allocation scheme for 3D torus based on first-fit approach. The scheme minimizes the allocation time by effectively manipulating the 3D information an 2D information using CST (Coverage Status Table). Comprehensive computer simulation reveals that the allocation time of the proposed scheme is always smaller than the earlier scheme based on best-fit approach, while allowing comparable processor utilization. The difference gets more significant as the input load increases. To investigate the performance of the proposed scheme with different scheduling environment, non-FCFs scheduling policy along with the typical FCFS policy is also studied.

  • PDF

Rheological Properties Investigation of Kerosene gels with Nano-Aluminum Particles (알루미늄 나노입자 첨가량에 따른 케로신 젤의 유변학적 특성 변화)

  • Kim, Sijin;Han, Seongjoo;Kim, Jinkon;Kang, Teagon;Moon, Heejang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.469-473
    • /
    • 2017
  • In this study, the rheological characteristics of kerosene based gel propellants were investigated. For the gelling agent, Thixatrol$^{(R)}$ has been used with 100 nm nano-sized aluminium particle addition. Three gellant contents of 2.5 wt%, 5 wt% and 7.5 wt% kerosene gels were first investigated where aluminium particles contents of 10 wt% and 20 wt% were added to 7.5 wt% gellant case. The viscosities of each sample measured by rotational rheometer show that the viscosity augments as gellant or aluminium content increases while the 20 wt% aluminum content resulted in failure of measurement due to the agglomerations of aluminum particles.

  • PDF

Character Segmentation on Printed Korean Document Images Using a Simplification of Projection Profiles (투영 프로파일의 간략화 방법을 이용한 인쇄체 한글 문서 영상에서의 문자 분할)

  • Park Sang-Cheol;Kim Soo-Hyung
    • The KIPS Transactions:PartB
    • /
    • v.13B no.2 s.105
    • /
    • pp.89-96
    • /
    • 2006
  • In this paper, we propose two approaches for the character segmentation on Korean document images. One is an improved version of a projection profile-based algorithm. It involves estimating the number of characters, obtaining the split points and then searching for each character's boundary, and selecting the best segmentation result. The other is developed for low quality document images where adjacent characters are connected. In this case, parts of the projection profile are cut to resolve the connection between the characters. This is called ${\alpha}$-cut. Afterwards, the revised former segmentation procedure is conducted. The two approaches have been tested with 43,572 low-quality Korean word images punted in various font styles. The segmentation accuracies of the former and the latter are 91.81% and 99.57%, respectively. This result shows that the proposed algorithm using a ${\alpha}$-cut is effective for low-quality Korean document images.

A Calibration Method of the CSC Model for Considering Material Properties of Ultra-high Performance Concrete (초고성능 강섬유 보강 콘크리트 물성 반영을 위한 소성 기반 콘크리트 CSC 모델 보정기법)

  • Gang-Kyu, Park;MinJoo, Lee;Sung-Wook, Kim;Hyun-Seop, Shin;Jae Heum, Moon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.402-410
    • /
    • 2022
  • The present study introduces a calibration method of the CSC model implemented in the LS-DYNA program for considering the material properties of ultra-high performance concrete(UHPC). Based on previous experimental studies, various parameters, which constitute three shear failure surfaces, pressure-volumetric strain curve, fracture energy, dynamic increase factor(DIF), and so on, are modified. Then, the proposed calibration method is verified by comparing the numerical result with the experimental data through the single element analysis. In addition, based on the established finite element models, the applicability of the calibrated CSC model is examined for UHPC structures subjected to impact and blast loadings.

Estimation of Strain for Large Deformation in SMA-textile Actuator Using Nonlinear Geometry Analysis (비선형 기하해석을 이용한 SMA 섬유 액츄에이터의 대변형에 대한 변형률 추정)

  • Muhammad Umar Elahi;Jaehyun Jung;Salman Khalid;Heung Soo Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.4
    • /
    • pp.259-265
    • /
    • 2024
  • Shape memory alloy (SMA)-textile actuators have attracted significant attention across various fields, including soft robotics and wearable technology. These smooth actuators are developed by combining SMA and simple textile fibers and then knitting them into two loop patterns known as the knit (K-loop) and plain (P-loop) patterns. Both loops are distinguished by opposite bending characteristics owing to loop head geometry. However, the knitting processes for these actuator sheets require expertise and time, resulting in high production costs for knitted loop actuation sheets. This study introduces a novel method by which to assess the strain in SMA textile-based actuators, which experience large deformations when subjected to voltage. Owing to the highly nonlinear constitutive equations of the SMA material, developing an analytical model for numerical analysis is challenging. Therefore, this study employs a novel approach that utilizes a linear constitutive equation to analyze large deformations in SMA material with nonlinear geometry considerations. The user-defined material (UMAT) subroutine integrates the linear constitutive equation into the ABAQUS software suite. This equivalent unit cell (EUC) model is validated by comparing the experimental bending actuation results of K-loops and P-loops.