• Title/Summary/Keyword: 변형률계

Search Result 51, Processing Time 0.023 seconds

Dynamic Response of Ieodo Ocean Research Station (이어도해양과학기지 구조물 계측신호 분석)

  • Kim Dong-Hyawn;Shim Jae-Seol;Min In-Kee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.1
    • /
    • pp.53-62
    • /
    • 2006
  • Structural measurements obtained from accelerometers, strain gauges. and tilt meters at Ieodo ocean research station was analyzed. In the acceleration signals, dynamic characteristics of the station were round by using the measured dynamic responses under different wave attacks and were compared with those by numerical analysis. Data from strain gauges and tilt-meters were also analyzed to identify the present state of dynamic response. Effect of wave height on the dynamic characteristics were investigated. The present results and those which will be measured and analyzed later can be used to identify and to assess the state of the station whether it is health or not.

Estimation of Vertical Load Capacity of PCFT Hybrid Composite Piles Using Dynamic Load Tests (동재하시험을 통한 긴장력이 도입된 콘크리트 충전 강관말뚝을 사용한 복합말뚝의 연직지지력 평가)

  • Park, Nowon;Paik, Kyuho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.3
    • /
    • pp.31-38
    • /
    • 2019
  • To determine the optimum dynamic load test analysis for PCFT (Prestressed Concrete Filled steel Tube) hybrid composite piles that PCFT piles are connected to the top of PHC piles, the dynamic load tests and CAPWAP analyses were performed on two hybrid composite piles with steel pipe and PCFT piles as upper piles. The results of the dynamic load tests and CAPWAP analyses showed that the particle velocity measured in PCFT hybrid composite piles was equal to the wave speed of PHC piles when the strain gauges and accelerometers are attached to the surface of inner composite PHC pile after removing the steel pipe in the upper PCFT pile. In addition, when assuming that the material of that upper PCFT pile was the same as that of the lower PHC pile and the cross-sectional area of the steel pipe in upper PCFT pile was converted to that for concrete through the pile model (PM) in CAPWAP analysis, the accuracy of the CAPWAP analysis result for PCFT hybrid composite piles was very high.

Adaptation of Modal Parameter and Elastic Modulus Estimation Method for PSC Bridge Based on Ambient Vibration (상시 진동 계측을 기반으로 한 PSC 교량의 모드계수 및 탄성계수 추정기법 적용)

  • Lee, Sung-Jin;Kim, Saang-Bum;Choi, Kyu-Yong;Lee, Tae-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.574-577
    • /
    • 2007
  • 본 논문에서는 실 시공 중인 PSC 교량에 대하여 풍하중에 의한 상시 진동 계측 자료을 기반으로, 교량의 동특성(고유진동수, 모드형상)을 추정하였으며, 이를 바탕으로 대상 교량의 탄성계수를 추정하여 정적 계측을 통한 탄성계수 결과와 비교하였다. 본 논문에서 사용한 동특성 추정 기법은, 대표적인 주파수 영역 해석 방법인 Frequency Domain Decomposition(FDD) 방법과 시간영역 해석 방법인 Stochastic Subspace Identification(SSI) 방법을 이용하였다. 탄성계수 추정은 유한요소모델과 계측 결과를 이용하여 두 개의 결과 차이가 수렴하도록 하는 반복 계산을 통해 탄성계수를 추정하였다. 우선, 탄성계수 추정 기법의 검증을 위해, 수치 해석을 통하여 그 기법을 검증하였으며, 해석 결과 정확한 탄성계수값을 추정하였으며, 이를 통해 본 논문에서 적용한 탄성계수 추정법에 대한 신뢰도를 확인하였다. 이를 바탕으로 사용된 추정 기법을 실 교량에 적용하기 위해 실제 상시 진동 계측 값을 바탕으로 실교량의 동특성 및 탄성계수를 추정하였다. FDD 및 SSI 기법을 통한 모드 해석 결과, 두 기법 모두 유사한 결과를 나타내어 FDD 및 SSI 두 방법에 대한 결과의 신뢰도를 확인 할 수 있었다. 추정 탄성계수 값은 거더 단면내 설치한 응력계 및 변형률계를 통한 계측 결과값의 범위 내에 있음을 확인하였다. 따라서 본 논문에서 적용한 교량의 상시 진동 데이터를 바탕으로 한동특성 및 탄성계수 추정법이 구조물의 대략적인 탄성계수 및 이에 따른 구조물의 전체적인 건전도를 파악하는데 도움이 되리라 생각된다.

  • PDF

Construction Monitoring Methods of FCM Bridge Using Temperature Data (온도데이터를 활용한 현장타설 캔틸레버 교량의 시공 중 계측)

  • Kim, Hyun-Joong;Moon, Dae Joong;Nam, Soon Sung;Jeong, Ju Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.219-227
    • /
    • 2016
  • In this study, we have proposed a method of monitoring of bridges under construction in view of the long-term behavior of the prestress concrete bridge of which the Free Cantilever Method is applied. As a method to confirm the ability of the long-term behavior of the concrete box girder, temperature sensors and strain gauges were installed, and the measured data was used to calculate creep coefficient. Moreover, we have measured the stress of the concrete box girder during construction which was applied with creep coefficient and compared with the changes in temperature to analyze the vertical displacement along the segment. In conclusion, monitoring of the FCM bridge during construction in consideration of the long-term behavior can be analyzed efficiently by suing temperature and displacement data without the use of laser displacement meter or laser delfectometer.

Countermeasure against the Increse of Axial Force in Strut due to Thermal Load-A Case Study (온도하중에 의한 버팀보 축력증가 대책사례)

  • Kwon, Oh-Sung;Lee, Jong-Sung
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.193-198
    • /
    • 2006
  • 서울지하철 0호선 000 공구 000 정거장 구간은 버팀보 7단, 어스앵커 2단, 그리고 록볼트 3단의 개착식 가시설로 설계되어 있다. 버팀보 및 앵커 축력 계측을 위해 변형률계 및 하중계를 설치하고 연속계측 중, 4~6단 버팀보 수 개소에서 5월부터 하중이 급격히 증가하엿다. 따라서 굴착작업을 즉시 중단하고 관리기준치를 초과하는 하중이 계측된 STA.9k+750~800 구간의 5, 6단 버팀보 위치에 격간으로 총 20본(10본${\times}$2단), 그리고 STA.9k+900~920 구간의 7단 버팀보 위치에 격간으로 총 9본(9본${\times}$1단)의 버팀보를 추가적으로 설치 완료하였다. 이 때, 추가 버팀보는 선행하중잭을 이용하여 10ton의 선행하중을 재하하였으며, 향후 추가 보강 필요시 재하하중 증가가 가능하도록 조치하였다. 또한, 추가 설치된 버팀보, 그리고 이상하중이 발생된 버팀보에 계측기를 추가 설치하여 지속적으로 계측중이며, 띠장의 변위발생 구간은 스티프너 및 앵글 등을 응급조치하였다. 본 사례 연구에서는 보강 전.후의 계측결과 및 수치해석적 분석을 이용하여 가시설 굴착시 버팀보의 하중증가 원인 및 보강 효과를 규명하고, 향후 추가 굴착시의 안정성 여부를 검토해 보고자 하였다. 계측값 분석 결과, 추가버팀보 보강 후의 기존버팀보 축력 계측 결과 보강 직후 기존버팀보의 축력이 어느정도 감소하였으며, 이후 시간이 지남에 따라 축력이 더 이상 증가하지 않고 일정한 값에 수렴하는 경향을 보였다. 또한 수치해석 결과 온도 증가가 버팀보 축력증가에 미치는 영향은 버팀보 위치의 지반강성이 클수록 크며, 축력증가는 온도증가에 대체적으로 비례하였고, 추가버팀보의 보강 효과는 선행하중의 크기에 비례하는 것으로 나타났으며, 잔여굴착은 전반적으로 기존 버팀보의 축력 증가에 영향을 미치는 것으로 나타났다. 따라서 추가굴착시 지속적인 계측을 수행하며, 급격한 축력증가가 관찰될 경우 현재 보강된 버팀보의 선행하중 추가 재하, 굴착에 가장 큰 영향을 받는 최하단 버팀보의 추가보강 등의 대책방안을 제시하였다.

  • PDF

An Analytical Study on the Durability Standard of Ground Structures Monitoring Sensors (지반구조물 계측센서의 내구연한 기준에 대한 분석적 연구)

  • Woo, Jong-Tae
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.1
    • /
    • pp.53-59
    • /
    • 2021
  • Purpose & Method: The purpose of this study is the theoretical study on the durability standard of ground structures monitoring sensors. A survey on the durability criteria for construction monitoring sensors of domestic construction companies and the income tax implementation regulations, the standard years of contents such as buildings and the standards of the Public Procurement Service for construction monitoring and construction machinery were analyzed. Result: The durability criterion such as the inclination meter and the strain gauge, which are purchased from the Public Procurement Service prior to installation on the ground structure, is 8 to 10 years. Conclusion: The actual durability analysis by comparing the reliability of various monitoring sensors installed in dams at home and abroad, As a result of comprehensive study on the loss and damage rate of the maintenance monitoring sensor installed in the tunnel, the proper durability period of the built-in type monitoring sensor such as domestic pore pressure meter and earth pressure meter installed in the structure or the ground is 5 to 8 years it seems reasonable.

Pile and Ground Responses during Driving of a Long PHC Pile in Deep Soft Clay (대심도 연약지반에서 장대 PHC말뚝의 항타에 따른 지반과 말뚝거동)

  • Kim, Sung-Ryul;Dung, N.T.;Chung, Sung-Gyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.131-141
    • /
    • 2007
  • Because pile behavior is governed by geotechnical characteristics of surrounding soils, it is therefore necessary to monitor ground responses during pile driving and analyze the relation between the behaviors of pile and ground. In this research, the 57 m long PHC pile was driven into deep soft clay in the Nakdong River estuary area. During and after the pile driving, the ground responses and the residual load of pile have been monitored for about a year, by using piezometers, inclinometers, level posts for surface settlement, and strain gauges in piles etc. As the results, the residual load by the negative skin friction along the pile increased with the dissipation of the excess pore pressure, which was developed by pile driving and reclamation. About 30% of the maximum residual load developed due to the dissipation of the increased excess pore pressure during the driving. It is thus emphasized that most piles driven in clay deposits need to be designed by considering negative skin friction along the pile.

Development of Temperature Compensated Micro Cone by using Fiber Optic Sensor (광섬유를 이용한 온도 보상형 마이크로콘의 개발)

  • Kim, Raehyun;Lee, Woojin;Yoon, Hyung-Koo;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4C
    • /
    • pp.163-174
    • /
    • 2009
  • Mechanical device using the load cell or strain gage sensor can be influenced by tempearute changes because temperature change can cause a shift in the load cell or straing gage output at zero loading. In this paper, micro cone penetrometers with 1~7mm in diameter, are developed by using an optical fiber sensor (FBG: Fiber Bragg Grating) to compensate the continous temperature change during cone penetration test. Note the temperature compensated method using optical fiber sensor which has hair-size in diameter, and is not affected by environmental conditions because the measured data is the wavelength shifting of the light instead of the intensity of the electric voltage. Temperature effect test shows that the output voltage of strain gage changes and increases with an increase in the temperature. A developed FBG cone penetrometer, however, achieves excellent temperature compensation during penetration, and produces continuous change of underground temperature. In addition, the temperature compensated FBG cone shows the excellent sensitivity and detects the interface of the layered soils with higher resolution. This study demonstrates that the fiber optic sensor renders the possibility of the ultra small size cone and the new fiber optic cone may produce more reliable temperature compensated tip resistance.

Development of Three-dimensional Finite Element Models for Concrete Pavement of the KHC Test Road (시험도로 계측 결과를 이용한 3차원 콘크리트포장 유한요소해석 결과 검증)

  • Lee, Dong-Hyun;Kim, Ji-Won;Kwon, Soon-Min;Lee, Jae-Hoon
    • International Journal of Highway Engineering
    • /
    • v.9 no.1 s.31
    • /
    • pp.1-15
    • /
    • 2007
  • The objective of this paper is the establishment of finite element analysis frame work for pavement research. Finite element analysis results simulating various loading experiments are verified with sensor measurements obtained from the KHC Test Road. The accuracy of the finite element analysis can be supported by these efforts so that it helps spread out the finite element analysis to pavement research and design processes. The finite element model used in this research is the full 3D nonlinear model including concrete slab, lean concrete base, subbase, shoulder, dowel, and tie-bar. In order to accomplish the accurate verification, the loading condition and the pavement temperature distribution are exactly simulated with field measured data. The curling behavior and the strain distribution are compared with measured responses from the loading tests with a truck and the FWD. Strain and curling predictions from the concrete slab are matched well with measured responses but the strain prediction from the lean concrete base is not matched with measured response. In addition, the magnitude of permanent curling is evaluated with the finite element analysis.

  • PDF

Fatigue Reliability Evaluation of an In-service Steel Bridge Using Field Measurement Data (현장계측데이터를 활용한 공용 중 강교량의 피로 신뢰도평가)

  • Lee, Sang Hyeon;An, Lee-Sak;Park, Yeun Chul;Kim, Ho-Kyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.599-606
    • /
    • 2022
  • Strain gauges and the bridge weigh-in-motion (BWIM) method are the representative field measurement methods used for fatigue evaluationsof a steel bridge-in-service. For a fatigue reliability evaluation to assess fatigue damage accumulation, the effective stress range and the number of stress cycles applied as the fatigue details can be estimated based on the AASHTO Manual for Bridge Evaluations with the field measurement data of the target bridge. However, the procedure for estimating the effective stress range and the stress cycles from field measurement data has not been explicitly presented. Furthermore, studies that quantitatively compare differences in fatigue evaluation results according to the field measurement data type or processing method used are still insufficient. Here, a fatigue reliability evaluation is conducted using strain and BWIM data that are measured simultaneously. A frame model and a shell-solid model were generated to examine the effect of the accuracy of the structural analysis model when using BWIM data. Also, two methods of handling BWIM data when estimating the effective stress range and average daily cycles are defined. As a result, differences in evaluation results according to the type of field measurement data used, the accuracy of the structural analysis model, and the data handling method could be quantitatively confirmed.