• Title/Summary/Keyword: 변태유기소성강

Search Result 6, Processing Time 0.019 seconds

Development of 590MPa Grade Galvannealed TRIP Steel Sheets containing Low Silicon Contents for High Strength and Formability (차량구조용 고강도 고성형성 590MPa급 Si 저감형 변태유기소성 합금화 용융아연 도금강판의 개발)

  • Chi, Kwang-Sub;Kim, Yong-Hee;Kim, Byoung-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.141-147
    • /
    • 2008
  • Hot-dip galvannealed sheet (GA) with high strength of 590MPa grade in tensile strength, has developed for automotive applications. However, for a successful application, the microstructure and galvannealing behavior of galvannealed TRIP steel sheets must be strictly controlled. High silicon contents steel has problems with weld-ability, zinc coating and reduction of retained austenite volume fraction after galvannealing process. The main purpose of this study is to solve the problem as indicated above.

Atomic Scale Investigation of TRIP Steels (변태 유기 소성강(TRIP steel)의 미세구조와 원자 단위 분석)

  • Lim, N.S.;Kang, J.S.;Kim, S.I.;Park, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.273-276
    • /
    • 2008
  • In this study, microstructure and distribution of alloy elements were investigated in thermo-mechanically processed C-Mn-Si transformation induced plasticity (TRIP) steels. The microstructures of TRIP steels were investigated by using advanced analysis techniques, such as three dimensional atom probe tomography (3D-APT). At first, the microstructure was observed by using TEM. TEM results revealed that microstructure of C-Mn-Si TRIP steel was composed of ferrite, bainte, and retained austenite. 3D-APT was used to characterize atomic-scale partitioning of added elements at the phase interface. In the retained austenite phase, Ti and B were enriched with C. However, there was no fluctuation of Mn and Si concentration across the interface. Through these analysis techniques, the advanced characteristics of constituent microstructure in C-Mn-Si TRIP steels were identified.

  • PDF

Numerical Simulation of Membrane of LNG Insulation System using User Defined Material Subroutine (사용자지정 재료 서브루틴을 활용한 LNG선박 단열시스템 멤브레인의 수치해석)

  • Kim, Jeong-Hyeon;Kim, Seul-Kee;Kim, Myung-Soo;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.265-271
    • /
    • 2014
  • 304L stainless steel sheets are used as a primary barrier for the insulation of membrane-type liquefied natural gas(LNG) carrier cargo containment system. 304L stainless steel is a transformation-induced-plasticity(TRIP) steel that exhibits complex material behavior, because it undergoes phase transformation during plastic deformation. Since the TRIP behavior is very important mechanical characteristics in a low-temperature environment, significant amounts of data are available in the literature. In the present study, a uniaxial tensile test for 304L stainless steel was performed to investigate nonlinear mechanical characteristics. In addition, a viscoplastic model and damage model is proposed to predict material fractures under arbitrary loads. The verification was conducted not only by a material-based comparative study involving experimental investigations, but also by a structural application to the LNG membrane of a Mark-III-type cargo containment system.

Characteristics of Zn-Ni Electrodeposition of 60 kgf/$\textrm{mm}^2$ Grade Transformation Induced Plastic Steel Sheets for Automotive Body (60 kgf/$\textrm{mm}^2$급 자동차용 변태유기소성강화강 Zn-Ni 전기도금 특성 연구)

  • Kim D. H.;Kim B. I.;Jeon Y. T.;Jeong Y. S.
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.5
    • /
    • pp.263-272
    • /
    • 2004
  • High strength steels such as transformation induced plastic steel, dual phase and solid solution Hardening have been developed and continuously improved due to the intensified needs in the automotive industry. But silicon and manganese in transformation induced plastic steels were known to exhibit harmful effects on galvannealing reaction by oxide film formed during heat treatment. Therefore, in this work, the applicability of Zn-Ni electrodeposition instead of hot dip galvannealed coating to transformation induced plastic steels was evaluated and optimum electroplating condition was investigated. Based on these investigations optimized electroplating conditions were proposed and Zn-Ni electrogalvanized steel sheet was produced by EGL (electrogalvanized line). Its perfomance properties for automotive steel was evaluated.

Formation of Ferrite-Cementite Microstructure by Strain Induced Dynamic Transformation in Medium Carbon Steels (중 탄소강의 변형유기 동적변태에 의한 페라이트-시멘타이트 형성거동에 대한 연구)

  • Lee Y. H.;Lee D. L.;Choo W. Y.;Lee C. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.211-214
    • /
    • 2004
  • In the present study, the effect of SIDT (Strain Induced Dynamic Transformation) on the microstructure of medium carbon steels was investigated to develop spheroidized annealing-free steel wire rods. When $0.45\%C$ steels were hot-deformed under the conditions of heavy reduction at low temperatures, a microstructure quite different from conventional ferrite-pearlite structure was obtained. It was considered that this ferrite-cementite microstructure was obtained because very small retained austenite grains existing between fine SIDT ferrites prefer to transform to cementite and ferrite instead of pearlite during cooling. Through the present study, $0.45\%C$ steels containing ferrite-cementite (FC) structure instead of ferrite-pearlite structure was obtained in as-rolled state by introducing SIDT. The specimen containing the FC structure was much softer than that containing conventional ferrite-pearlite structure. Therefore, it is concluded that deforming medium carbon steels under the conditions of SIDT is a very powerful method to obtain soft steel wire rods which could be cold-forged without softening heat-treatment

  • PDF

Improvement of Mechanical Properties of Nanocrystalline FeCrC Alloy via Strain-Induced Martensitic Transformation (소성유기마르텐사이트 변태에 의한 나노결정 FeCrC 소결합금의 기계적 강도 향상)

  • Kim, Gwanghun;Jeon, Junhyub;Seo, Namhyuk;Park, Jungbin;Son, Seung Bae;Lee, Seok-Jae
    • Journal of Powder Materials
    • /
    • v.28 no.3
    • /
    • pp.246-252
    • /
    • 2021
  • The effect of sintering conditions on the austenite stability and strain-induced martensitic transformation of nanocrystalline FeCrC alloy is investigated. Nanocrystalline FeCrC alloys are successfully fabricated by spark plasma sintering with an extremely short densification time to obtain the theoretical density value and prevent grain growth. The nanocrystallite size in the sintered alloys contributes to increased austenite stability. The phase fraction of the FeCrC sintered alloy before and after deformation according to the sintering holding time is measured using X-ray diffraction and electron backscatter diffraction analysis. During compressive deformation, the volume fraction of strain-induced martensite resulting from austenite decomposition is increased. The transformation kinetics of the strain-induced martensite is evaluated using an empirical equation considering the austenite stability factor. The hardness of the S0W and S10W samples increase to 62.4-67.5 and 58.9-63.4 HRC before and after deformation. The hardness results confirmed that the mechanical properties are improved owing to the effects of grain refinement and strain-induced martensitic transformation in the nanocrystalline FeCrC alloy.