• Title/Summary/Keyword: 변위.

Search Result 6,624, Processing Time 0.04 seconds

Structural Behavior Evaluation of NRC Beam-Column Connections (NRC 보-기둥 접합부의 구조적 거동 평가)

  • Jeon, Ji-Hwan;Lee, Sang-Yun;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.73-80
    • /
    • 2022
  • In this study, details of NRC beam-column connections were developed in which beam and columns pre-assembled in factories using steel angles were bolted on site. The developed joint details are NRC-J type and NRC-JD type. NRC-J type is a method of tensile joining with TS bolts to the side and lower surfaces of the side plate of the NRC column and the end plate of the NRC beam. NRC-JD type has a rigid joint with high-strength bolts between the NRC beam and the side of the NRC column for shear, and with lap splices of reinforcing bar penetrating the joint and the beam main reinforcement for bending. For the seismic performance evaluation of the joint, three specimens were tested: an NRC-J specimen and NRC-JD specimen with NRC beam-column joint details, and an RC-J specimen with RC beam-column joint detail. As a result of the repeated lateral load test, the final failure mode of all specimens was the bending fracture of the beam at the beam-column interface. Compared to the RC-J specimen, the maximum strength of the specimen by the positive force was 10.1% and 29.6% higher in the NRC-J specimen and the NRC-JD specimen, respectively. Both NRC joint details were evaluated to secure ductility of 0.03 rad or more, the minimum total inter-story displacement angle required for the composite intermediate moment frame according to the KDS standard (KDS 41 31 00). At the slope by relative storey displacemet of 5.7%, the NRC-J specimen and the NRC-JD specimen had about 34.8% and 61.1% greater cumulative energy dissipation capacity than the RC specimen. The experimental strength of the NRC beam-column connection was evaluated to be 30% to 53% greater than the theoretical strength according to the KDS standard formula, and the standard formula evaluated the joint performance as a safety side.

Evaluation of Space-based Wetland InSAR Observations with ALOS-2 ScanSAR Mode (습지대 변화 관측을 위한 ALOS-2 광대역 모드 적용 연구)

  • Hong, Sang-Hoon;Wdowinski, Shimon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.447-460
    • /
    • 2022
  • It is well known that satellite synthetic aperture radar interferometry (InSAR) has been widely used for the observation of surface displacement owing to earthquakes, volcanoes, and subsidence very precisely. In wetlands where vegetation exists on the surface of the water, it is possible to create a water level change map with high spatial resolution over a wide area using the InSAR technique. Currently, a number of imaging radar satellites are in operation, and most of them support a ScanSAR mode observation to gather information over a large area at once. The Cienaga Grande de Santa Marta (CGSM) wetland, located in northern Colombia, is a vast wetland developed along the Caribbean coast. The CGSM wetlands face serious environmental threats from human activities such as reclamation for agricultural uses and residential purposes as well as natural causes such as sea level rise owing to climate change. Various restoration and protection plans have been conducted to conserve these invaluable environments in recognition of the ecological importance of the CGSM wetlands. Monitoring of water level changes in wetland is very important resources to understand the hydrologic characteristics and the in-situ water level gauge stations are usually utilized to measure the water level. Although it can provide very good temporal resolution of water level information, it is limited to fully understand flow pattern owing to its very coarse spatial resolution. In this study, we evaluate the L-band ALOS-2 PALSAR-2 ScanSAR mode to observe the water level change over the wide wetland area using the radar interferometric technique. In order to assess the quality of the interferometric product in the aspect of spatial resolution and coherence, we also utilized ALOS-2 PALSAR-2 stripmap high-resolution mode observations.

Geometry and Kinematics of the Northern Part of Yeongdeok Fault (영덕단층 북부의 기하와 운동학적 특성)

  • Gwangyeon Kim;Sangmin Ha;Seongjun Lee;Boseong Lim;Min-Cheol Kim;Moon Son
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.1
    • /
    • pp.55-72
    • /
    • 2023
  • This study aims to identify the fault zone architecture and geometric and kinematic characteristics of the Yeongdeok Fault, based on the geometry and kinematic data of various structural elements obtained by detailed field survey and anisotropy of magnetic susceptibility (AMS) of the fault rocks. The Yeongdeok Fault extends from Opo-ri, Ganggu-myeon, Yeongdeok-gun to Gilgok-ri, Maehwa-myeon and Bangyul-ri, Giseong-myeon, Uljin-gun, and cuts various rock types from the Paleo-proterozoic to the Mesozoic with a range of 4.6-5.0 km (4.77 km in average) of right-lateral offset or forms the rock boundaries. The fault is divided into four segments based on its geometric features and shows N-S to NNW strikes and dips of an angle of ≥ 54° to the east at most outcrops, even though the outcrops showing the westward dipping (a range of 54°-82°) of fault surface increase as it goes north. The Yeongdeok Fault shows the difference in the fault zone architecture and in the fault core width ranging from 0.3 to 15 m depending on the bedrock type, which is interpreted as due to differences in the physical properties of bedrock such as ductility, mineral composition, particle size, and anisotropy. Combining the results of paleostress reconstruction and AMS in this and previous studies, the Yeongdeok Fault experienced (1) sinistral strike-slip under NW-SE maximum horizontal principle stress (σHmax) and NE-SW minimum horizontal principle stress (σHmin) in the late Cretaceous to early Cenozoic, and then (2) dextral strike-slip under NE-SW maximum horizontal principle stress (σHmax) and NW-SE minimum horizontal principle stress (σHmin) in the Paleogene. It is interpreted that the deformation caused by the Paleogene dextral strike-slip movement was the most dominant, and the crustal deformation was insignificant thereafter.

Reinforcing Effects around Face of Soil-Tunnel by Crown & Face-Reinforcing - Large Scale Model Testing (천단 및 막장면 수평보강에 의한 토사터널 보강효과 - 실대형실험)

  • Kwon Oh-Yeob;Choi Yong-Ki;Woo Sang-Baik;Shin Jong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.71-82
    • /
    • 2006
  • One of the most popular pre-reinforcement methods of tunnel heading in cohesionless soils would be the fore-polling of grouted pipes, known as RPUM (reinforced protective umbrella method) or UAM (umbrella arch method). This technique allows safe excavation even in poor ground conditions by creating longitudinal arch parallel to the tunnel axis as the tunnel advances. Some previous studies on the reinforcing effects have been performed using numerical methods and/or laboratory-based small scale model tests. The complexity of boundary conditions imposes difficulties in representing the tunnelling procedure in laboratory tests and theoretical approaches. Full-scale study to identify reinforcing effects of the tunnel heading has rarely been carried out so far. In this study, a large scale model testing for a tunnel in granular soils was performed. Reinforcing patterns considered are four cases, Non-Reinforced, Crown-Reinforced, Crown & Face-Reinforced, and Face-Reinforced. The behavior of ground and pipes as reinforcing member were fully measured as the surcharge pressure applied. The influences of reinforcing pattern, pipe length, and face reinforcement were investigated in terms of stress and displacement. It is revealed that only the Face-Reinforced has decreased sufficiently both vertical settlement in tunnel heading and horizontal displacement on the face. Vertical stresses along the tunnel axis were concentrated in tunnel heading from the test results, so the heading should be reinforced before tunnel advancing. Most of maximum axial forces and bending moments for Crown-reinforced were measured at 0.75D from the face. Also it should be recommended that the minimum length of the pipe is more than l.0D for crown reinforcement.

Effects of Muscle Activation Pattern and Stability of the Lower Extremity's Joint on Falls in the Elderly Walking -Retrospective Approach- (노인 보행 시 하지 근 활동 양상과 관절의 안정성이 낙상에 미치는 영향 -후향성 연구-)

  • Ryu, Jiseon
    • 한국체육학회지인문사회과학편
    • /
    • v.57 no.3
    • /
    • pp.345-356
    • /
    • 2018
  • Objective: The purpose of this study was to investigate the local stability of the lower extremity joints and muscle activation patterns of the lower extremity during walking between falling and non-falling group in the elderly women. Method: Forty women, heel strikers, were recruited for this study. Twenty subjects (age:72.55±5.42yrs; height:154.40±4.26cm; mass:57.40±6.21kg; preference walking speed:0.52±0.17m/s; fall frequency=1.70±1.26 times) had a history falls(fall group) within two years and Twenty subjects (71.90±2..90yrs; height:155.28±4.73cm; mass:56.70±5.241kg; preference walking speed: 0.56±0.13m/s) had no history falls(non-fall group). While they were walking on a instrumented treadmill at their preference speed for a long while, kinematic and EMG signals were obtained using 3-D motion capture and wireless EMG electrodes, respectively. Local stability of the ankle and knee joint were calculated using Lyapunov Exponent (LyE) and muscles activation and their co-contraction index were also quantified. Hypotheses were tested using one-way ANOVA and Mann-Whitey. Spearman rank was also used to determine the correlation coefficients between variables. Level of significance was set at p<.05. Results: Local stability in the knee joint adduction-abduction was significantly greater in fall group than non-fall group(p<.05). Activation of anterior tibials that acts on the foot segment dorsal flexion was greater in non-fall group than fall group(p<.05). CI between gastrocnemius and anterior tibials was found to be significantly different between two groups(p<.05). In addition, there was significant correlation between CI of the leg and LyE of the ankle joint flexion-extention in the fall group(p<.05). Conclusion: In conclusion, muscles that act on the knee joint abduction-adduction as well as gastrocnemius and anterior tibials that act on the ankle joint flexion-extention need to be strengthened to prevent from potential fall during walking.

An Understanding the Opening Style of the West Philippine Basin Through Multibeam High-Resolution Bathymetry (고해상도 다중빔음향측심 지형자료 분석을 통한 서필리핀분지의 진화 연구)

  • Hanjin Choe;Hyeonuk Shin
    • Journal of the Korean earth science society
    • /
    • v.44 no.6
    • /
    • pp.643-654
    • /
    • 2023
  • The West Philippine Basin, an oceanic basin half the size of the Philippine Sea Plate, lies in the western part of the plate and south of the Korean Peninsula on the Eurasian Plate. It subducts beneath the Eurasian Plate and the Philippine Islands bordering the Ryukyu Trench and the Philippine Trench with 25-50% of this basin already consumed. However, the history of the opening of the basin's southern region has been a topic of debate. The non-transform discontinuity formed during the seafloor spreading is similar to the transform fault boundaries normally perpendicular to mid-ocean ridge axes; however, it was created irregularly due to ridge propagations caused by variations of mantle convection attributable to magma supply changes. By analyzing high-resolution multi-beam echo-sounding data, we confirmed that the non-transform discontinuity due to the propagating rift evolved in the entire basin and that the abyssal hill strike direction changed from E-W to NNW-SSE from the fossil spreading center. In the early stage of basin extension, the Amami-Sankaku Basin was rotated 90 degrees clockwise from its current orientation, and it bordered the Palau Basin along the Mindanao Fracture Zone. The Amami-Sankaku Basin separated from the Palau Basin while the spreading of the West Philippine Basin began with a counter-clockwise rotation. This indicates that the non-transform discontinuities formed by a sudden change in magma supply due to the drift of the Philippine Sea Plate and simultaneously with the rapid changes in the spreading direction from ENE-WSW to N-S. The Palau Basin was considered to be the sub-south of the West Philippine Basin, but recent studies have shown that it extends into an independent system. Evidence from sediment layers and crustal thickness hints at the possibility of its existence before the West Philippine Basin opened, although its evolution continues to be debated. We performed a combined analysis using high-resolution multi-beam bathymetry and satellite gravity data to uncover new insights into the evolution of the West Philippine Basin. This information illuminates the complex plate interactions and provides a crucial contribution toward understanding the opening history of the basin and the Philippine Sea Plate.

Monitoring and Preventive Preservation of Cultural Heritages to Maintain Original Wooden Architectural Cultural Heritage (목조건축문화재 원형유지를 위한 문화재돌봄 모니터링과 예방보존)

  • CHUN Kyoungmee
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.4
    • /
    • pp.192-214
    • /
    • 2023
  • Wooden architectural cultural heritages are one of the visible legacies that show the national's identity. Even when the concept of 'the original' of cultural heritages was not accurately understood, the emphasis of preservation and management of cultural heritages was placed on 'preservation of the original form' or 'maintenance of the original form'. Moreover, these days, following the trend of international preservation principles, cultural heritages are considered important as "values as historical objects." This paper is the result of an attempt to determine the scope and content of what parts should be monitored to maintain the original form of wooden architectural cultural heritage. The first thing to be done in monitoring wooden architectural cultural heritage is to check the condition of the ground and foundation. The second is the column. This is because the instability of the column causes damage to the joint with each member and the fitting part, resulting in physical changes leading to damage to the wall. The third is monitor the roof tiles. If the leak continues into the building due to the separation or damage of the roof, the defect should be partially dismantled and repaired, so it should be monitored to maintain its original shape as much as possible. The monitoring range of the base, column, and roof serves as a reference point for identifying what damage is being done to the relevant cultural heritages. In other words, the data at the time when monitoring began becomes the 'original' for the year. Alternatives based on the analysis of monitoring for the preservation of original cultural heritages should be actively introduced. In addition, by sharing the current state and situation of cultural heritages as a result of monitoring with various related organizations, preventive preservation should be established rather than preservation of cultural heritages by "intervention."

Shear strain behaviour due to twin tunnelling adjacent to pile group (군말뚝 기초 하부 병렬터널 굴착 시 전단변형 거동 특성)

  • Subin Kim;Young-Seok Oh;Yong-Joo Lee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.1
    • /
    • pp.59-78
    • /
    • 2024
  • In tunnel construction, the stability is evaluated by the settlement of adjacent structures and ground, but the shear strain of the ground is the main factor that determines the failure mechanism of the ground due to the tunnel excavation and the change of the operating load, and can be used to review the stability of the tunnel excavation and to calculate the reinforcement area. In this study, a twin tunnel excavation was simulated on a soft ground in an urban area through a laboratory model test to analyze the behavior of the twin tunnel excavation on the adjacent pile grouped foundation and adjacent ground. Both the displacement and the shear strain of ground were obtained using a close-range photogrammetry during laboratory model test. In addition, two-dimensional finite element numerical analysis was performed based on the model test. The results of a back-analysis showed that the maximum shear strain rate tends to decrease as the horizontal distance between the pillars of the twin tunnel and the vertical distance between the toe of the pile group and the crown of the tunnel were decreased. The impact of the second tunnel on the first tunnel and pile group was decreased as the horizontal distance between the pillars of the twin tunnel was increased. In addition, the vertical distance between the toe of the pile group and the crown of the tunnel had a relatively greater impact on the shear strain results than the horizontal distance of the pillars between the twin tunnels. According to the results of the close-range photogrammetry and numerical analysis, the settlement of adjacent pile group and adjacent ground was measured within the design criteria, but the shear strain of the ground was judged to be outside the range of small strain in all cases and required reinforcement.

A Study on the Stress Distribution of Tooth/Implant Connected with Konus Telescope Denture Using 3-Dimensional Finite Element Method (이중관으로 연결된 자연치와 임플랜트의 악골 내응력분포에 관한 3차원 유한요소분석)

  • Lee, Su-Ok;Choi, Dae-Gyun;Kwon, Kung-Rock;Woo, Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.4
    • /
    • pp.381-395
    • /
    • 2008
  • Purpoose: For decades dental implants have been used widely in the field of prosthetic dentistry. However there is confusion when establishing treatment plans in cases where some teeth are remained but an insufficient number of implants can be used due to limited anatomical status and ecomomical problems. Many clinicians have tried to connect natural teeth and implants, and it still has controversy. But, there have been few studies on mechanical analysis of connecting natural teeth and implants with konus telescopic removable partial dentures. The purpose of this study was to analyze the stress distribution of prosthesis, abutment and alveolar bone when teeth and implants were connected with the konus telescopic denture, by means of 3-dimensional finite element analysis. Material and methods: The assumption of this study was that there were 2 mandibular canine (11 mm in length, 4 mm in diameter) and 2 implants(10 mm in length, 4 mm in diameter) which are located in the second premolar region. The mandible, teeth, implants, abutments, and connectors are modeled, and analyzed with the commercial software, ANSYS Version 8.1(Swanson, Inc., USA). The control group used implants instead of natural teeth. 21038 elements, 23544 nodes were used in experimental group and 107595 elements, 21963 nodes were used in control group, Stress distribution was evaluated under 150 N vertical load on 3 experimental conditions - between teeth and implants (Load case 1), posterior to implants (Load case 2), between natural teeth (Load case 3). Results: 1. In all load cases, higher von mises stress value was observed in the experimental group. 2. Maximum von miss stress observed in all load cases and all locations were as follows ; a. 929.44 Mpa in the experimental group, 640.044 Mpa in the control group in outer crown and connector - The experimental group showed 1.45 times high value compared with the control group. b. 145,051 Mpa in the experimental group, 142.338 Mpa in the control group in abutment - The experimental group showed 1.02times high value compared with the control group. c. 32.489 Mpa in the experimental group, 25.765 Mpa in the control group in alveolar bone - The experimental group showed 1.26times higher value compared with the control group. 3. All maximum von mises stress was observed in load case 2, and maxim von mises stress in alveolar bone was 32.489 Mpa at which implant failure cannot occur. 4. If maximum von mises stress is compared between two groups, the value of the experimental group is 1.02 times higher than the control group in abutment, 1.26 times higher than the control group in alveolar bone. Conclusion: If natural teeth and implants are connected with the konus telescopic denture, maximum stress will be similar in abutment, 1.26 times higher in alveolar bone than the control group. With this result, there may be possible to make to avoid konus telescopic dentures where natural teeth and implants exist together.

Application of a Modified Triple Pelvic Osteotomy for Treatment of Hip Dysplasia in Dogs (개의 고관절 이형성 치료를 위한 변형 3중 골반 절골술의 적용)

  • Kim Young-Sam;Lim Ji Hey;Jung Chang-soo;Byeon Ye-eun;Kanaya Tomohiro;Nagaoka Katsuyoshi;Kweon Oh-kyeong
    • Journal of Veterinary Clinics
    • /
    • v.22 no.4
    • /
    • pp.328-335
    • /
    • 2005
  • The objective of this study was to evaluate tire effects of modified triple pelvic osteotomy(TPO). The procedures of modified TPO were composed of two iliac osteotomies and a pubic symphysiotomy at a tittle. Medical records of modified TPO treatment on 36 dogs and of unilateral TPO on 7 dogs were reviewed on the basis of signalment, body weight, operation time, Healing time of osteotomy sites and complications from October 2002 to September 2004. The values of clinical status and hip dysplasia, Norberg angle, percentage of femoral head coverage and pelvic diameter from radiographs taken preoperative, immediately postoperative, 2, 4, 8, 12 and 24 weeks after operation, respectively, were measured. In .unilateral TPO, the dogs could start standing without assistance from $3.0\pm1.0days$ and walking from $8.3\pm0.6days$ (n=3). Mean clinical grade before and 24 weeks after surgery were $2.2\pm0.42$(n=6) and $3.5\pm0.7$ (n=2), respectively. Mean operation time was $107.3\pm38.9$ minutes (n=4). In modified TPO, the dogs were seen to staff standing without assistance from $4.9\pm3.7$ days and walking from $7.3\pm4.8days$ (n=25). Mean clinical grade before surgery and 24 weeks after surgery were $2.3\pm1.5$ (n=27) and $3.2\pm0.7$)(n=9), respectively. Postoperative clinical grade significantly improved against preoperative clinical grade (P<0.01). Mean operation time was $143\pm42.8$ minutes (n=24). This was shorter than time f3r twice unilateral TPO. By comparison with preoperative values, postoperative mean radiographic grade, percentage of femoral head coverage and Norberg angle measured at the recheck time point significantly increased (P<0.01). Mean postoperative pelvic diameter was significantly larger than preoperative pelvic diameter in modified TPO (P<0.01) but not in unilateral TPO. These results indicated that modified TPO was effective technique for the treatment of hip dysplasia in dogs.