• Title/Summary/Keyword: 변위 감소비

Search Result 341, Processing Time 0.025 seconds

고감쇠 면진베어링을 이용한 지진응답 감소

  • Koo, Gyeong-Hoe;Lee, Jae-Han;Yoo, Bong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05b
    • /
    • pp.987-992
    • /
    • 1995
  • 본 논문에서는 복잡한 Hysteretic 복원력-변형률 특성을 갖는 고감쇠 면진베어링에 대한 Hysteretic bi-linear 모델을 사용하여 비교적 해의 정확성을 보장할 수 있는 Runge-Kutta 방법으로 지진해석을 위한 공식을 유도하였다. 그리고 Hysteretic bi-linear 모델을 사용한 면진베어링의 응답해석결과로부터 등가선형모델을 구하여 각각의 모델에 대한 지진응답 특성들을 비교분석하였다. 고감쇠 면진베어링을 전형적인 경수로원자로모델에 적용한 결과 면진구조물은 비면진 구조물에 비하여 가속도응답이 크게 감소함을 알 수가 있었다. 또한 면진베어링의 Hysteretic bi-linear 모델을 사용한 지진응답해석은 등가선형모델에 비하여 최대 변위응답특성은 유사하나 가속도응답은 크게 나타났다.

  • PDF

Finite Element Analysis of the Monoleaflet Polymer to Minimize Stress and Displacement (응력 및 변위를 최소화하기 위한 단엽식 고분자 판막의 유한 요소 해석)

  • 한근조;안성찬
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.1
    • /
    • pp.85-92
    • /
    • 1996
  • A monoleaflet polymer artificial heart valve which showed the remarkable improvement in pressure drop compared with other types of artificial valve was designed to minimize the deflection in vertical direction and the displacement of the valve tip in horizontal direction obtained by using finite element method as the location of the supporting members of the valve frame changed stress distribution change was also studied on each model generated by changing the distance between the frame and supporting members. It was found that by using the valve tip horizontal displacement the minimum valve thickness could be obtained in order to prevent the gap between the valve tip and the frame wall.

  • PDF

A Study on the Behavior of Diaphragm Walls by Numerieal Method (수치해석(數値解析)에 의한 지중연속벽(地中連續壁)의 거동(擧動)에 관한 연구(硏究))

  • Lee, Hyung Soo;Chung, Hyung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.123-132
    • /
    • 1990
  • This paper deals with the influences on the wall movements and earth pressure distribution for strutted diaphragm wall of various design depth ration and pre-displacement at strutted point. The numerical method is adopted for the study. The conclusions derived from the study were summarized as followes: 1. The elasto-plastic depth ratio in the passive region is found to decrease as such parameters as wall stiffness, soil density and penetration depth ratio decrease. 2. Values of maxium bending moments of the walls decrease with the increase of soil density, and the influence to the wall stiffness increases in proportion to the penetration depth. 3. Maximum strut reaction is found to be inversely proportional to the soil density. 4. Pre-displacement at the point of strut installation must be brougt into consideration on account of its active influence to the deflection of wall bodies.

  • PDF

Quasi-Static Tests for Seismic Performance of Circular RC Bridge Piers (단일주 원형 철근콘크리트 교각의 내진거동에 관한 준정적 실험)

  • 정영수;이강균;한기훈;박종협
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.55-66
    • /
    • 1999
  • Eight RC bridge plers have been made on a 1/3.4 scale model and have been tested in a quasi-static cyclic load so as to investigate their seismic performance. The ultimate objective of this experimental study is to investigate the hysteretic behavior of reinforced concrete plers, which have been widely used for urban transportation facilities in Korea. Improtant test parameters are hoop ratio, axial load, load pattern, and etc. And noninear behaviors of test columns have been evaluated through their yield and ultimate strength, energy dissipation, ductility and load-deflection characteristics under quasi-static cyclic loads. From the quasi-static tests on 8 bridge piers, it is concluded that energy dissipation, ultimate strength and curvature for a given displacement factor ${\mu}={\Delta}/{\Delta}_y$ are higher for the seismically designed columns than for the nonseismically designed columns.

  • PDF

An Experimental Study for the Shear Property Dependency of High Damping Rubber Bearings (고감쇠 고무받침의 전단특성 의존성에 대한 실험적 연구)

  • Oh, Ju;Jung, Hie-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.121-129
    • /
    • 2010
  • In this paper, the characteristics of high damping rubber bearing were studied through various prototype test. The characteristics of HDRB were dependent on displacements, repeated cycles, frequencies, vertical pressure, temperature, the capability of shear deformation and the vertical stiffness. The prototype test showed that the displacement was the most governing factor influencing on characteristics of HDRB. The effective stiffness and equivalent damping of HDRB were decreased with displacement, and increased with frequency. The effective stiffness was decreased with high vertical pressure, while the equivalent damping was increased. In which, the equivalent damping was more dependent on the vertical pressure than the effective stiffness. According to the results of this study, more careful examination is required to design the effective stiffness and equivalent damping ratio considering the dependencies of design displacement and exciting velocity.

Dynamic behavior of the bridge with seismic isolation bearing (내진 분리 베어링이 설치된 교량의 동적 거동)

  • 전귀현
    • Computational Structural Engineering
    • /
    • v.7 no.1
    • /
    • pp.83-90
    • /
    • 1994
  • This study presents the nonlinear dynamic analysis method of the bridge with the seismic isolation bearing. Also the numerical analyses are performed for investigating the response characteristics of the bridge isolated with the lead-rubber bearing under the ground motions compatible to Korea bridge design response spectra. It is found that the pier design force can be considerably smaller than the one for the bridge with the fixed bearing. It is observed that the lead-rubber bearing has the great effectiveness for reducing the longitudinal seismic force in case of the bridges with low and medium periods. Therefore the seismic isolation bearing can be used instead of the fixed bearing for the economic and safe design of the bridge.

  • PDF

A Study on Fracture Bahavior of Composite Material Subjected to Simultaneous Deformation Mode (연립변형모드 구성된 복합재료의 파괴역학적 거동에 관한 연구)

  • 김상철
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.3
    • /
    • pp.179-187
    • /
    • 1997
  • 콘크리트는 여러 구성 성분들이 불규칙적인 배열을 이루어 형성된 복합재료이지만, 과거에는 이 재료를 하나의 단종재료로 간주하여 해석하였기 때문에, LEFM에서 사용되는 파괴인성계수만으로는 콘크리트의 파괴역학적 접근이 어렵다는 것 이외에는 파괴인성계수들의 크기의존성에 대한 이유라든가, 실험을 통해서 관측된 구조물 두께 방향으로의 서로 다른 깊이의 균열 진행 현상에 대해서는 설명하기가 어려웠다. 따라서 본 연구는 콘크리트를 하나의 복합재료로써 각각의 구성요소들이 차지하고 있는 체적비 및 배열상의 효과를 고려하여 복합재료의 파괴거동을 해석하고, 구성재료의 수와 파괴인성계수와의 상관관계를 분석하였다. 각각의 구성요소들을 연립변형모드( SD mode)로 배열시킨 조건에서 복합재료역학개념에 입각하여 해석한 결과, 일반적으로 실험이나 비선형파괴역학 해석과 같이 하중-변위곡선 상단부에서 비선형 거동이 관측되었다. 또한 임계응력확대계수( $K_IC$)나 파괴에너지($G_r$)는 구성원의 수나 보의 크기에 대해서 거의 무관한 값을 나타내지만, 임계군열선단개구변위 ($CTOD_c$)는 크기에 영향을 받음을 보여 주었다. 균열의 진행속도는 균열이 진행될수록 감소하며, 파괴인성이 작은 구성원에서부터 균열이 발생되어 결과적으로 보의 두께 방향으로 서로 다른 크기의 균열길이가 생성됨이 관측되었다.

Seismic Performance of RC Frame System Retrofitted with TS Seismic Strengthening Method(Part 2:Analytical Study) (TS 제진공법으로 내진보강된 철근콘크리트 골조의 내진성능(Part 2:해석적 연구))

  • Jung, Myung-Cheol;Song, Jeong-Weon;Song, Jin-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.148-153
    • /
    • 2018
  • In this study, the nonlinear time history analysis of seismic retrofitted structures with TS damper for seven ground motion records was conducted for the purpose of verifying the seismic strengthening effect of TS seismic retrofitting method. Through comparison of the interstory drift ratio and the energy dissipation amount of the non - reinforced structure obtained and those of retrofitted structures with TS damper from the nonlinear time history analysis, the interstory drift ratio was reduced by about 30% and the amount of energy dissipation through the structure was halved. As a result, it was confirmed that the damping performance of the TS seismic retrofitting method is excellent.

Inelastic Time History Analysis of a 5-Story RC OMRF Considering Inelastic Shear Behavior of Beam-Column Joint (보-기둥 접합부 비탄성 전단거동을 고려한 5층 철근콘크리트 보통모멘트골조의 비탄성 시간이력해석)

  • Kang, Suk-Bong;Kim, Tae-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.633-641
    • /
    • 2012
  • In this study, the effects of the inelastic shear behavior of beam-column joint on the response of RC OMRF are evaluated in the inelastic time history analysis. For an example, a 5-story structure for site class SB and seismic design category C was designed in accordance with KBC2009. Bending moment-curvature relationship for beam and column was evaluated using fiber model and bending moment-rotation relationship for beam-column joint was calculated using simple and unified joint shear behavior model and moment equilibrium relationship. The hysteretic behavior was simulated using three-parameter model suggested in IDARC program. The inelastic time history analysis with PGA for return period of 2400 years showed that the model with inelastic beam-column joint yielded smaller maximum base shear force but nearly equivalent maximum roof displacement and maximum story drift as those obtained from analysis using rigid joint. The maximum story drift satisfied the criteria of KBC2009. Therefore, the inelastic shear behavior of beam-column joint could be neglected in the structural design.

A Study on the Influence Range of Lateral Movement of Abutment on the Soft Clay by MCC Model (MCC 모델에 의한 연약지반의 교대측방이동 영향범위에 관한 연구)

  • Park, Choon Sik;Kim, Jong Hwan;Baek, Jin Sool
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.195-205
    • /
    • 2013
  • This study, using the MCC Model to consider consolidation, estimated the range within which no influences occur from lateral movement and its amount of the foundation pile and abutment on the soft ground. This study performed finite element analyses, with variations on the adhesiveness and internal friction angle, depth of soft clay, embankment height, consolidation parameters, and separation distance between the abutment and embankment. The abutment's horizontal displacement exhibits linear change with a longer separation distance, and changes into an exponential form as the embankment gets closer to the abutment. As the soft clay layer becomes 10 m deeper, the horizontal displacement tends to increase 1.5~3.0 times. However, it decreases at a rate of 0.3~0.95 when adhesiveness is increased by 10 $kN/m^2$ and internal friction angle is increased by $5^{\circ}$. The increase change rate in a lateral movement amount becomes greater if it is closer to the abutment when the abutment separation distance is long. When the distance is short, the change rate of horizontal displacement increases in similar a way, but it tends to be decreasing overall.