• Title/Summary/Keyword: 변위 감소비

Search Result 341, Processing Time 0.02 seconds

Evaluation of Inelastic Displacement Ratios for Smooth Hysteretic Behavior Systems (완만한 이력거동 시스템에 대한 비탄성 변위비의 평가)

  • Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.11-26
    • /
    • 2011
  • The inelastic displacement ratio is defined as the ratio of the peak inelastic displacement to the peak linear elastic displacement. The inelastic displacement ratio allows simple evaluation of the peak inelastic displacement directly from the peak elastic displacement without computation of the inelastic response. Existing research of the inelastic displacement ratio is limited to piece-wise linear systems such as bilinear or stiffness degrading systems. In this paper, the inelastic displacement ratio is investigated for smooth hysteretic behavior systems subjected to near- and far-fault earthquakes. A simple formula of the inelastic displacement ratio is proposed by using a two step procedure of regression analysis.

Determination of the Strength and Stiffness Degradation Factor for Circular R/C Bridge Piers (원형 철근콘크리트 교각의 강성 및 강도감소지수 결정)

  • 이대형;정영수
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.73-82
    • /
    • 2000
  • 본연구의 목적은 반복하중을 받는 철근콘크리트 교량 교각의 비선형 이력거동을 해석적으로 예측하는 것이다 이를 위해서 반복적인 횡하중이 작용하는 경우에 실험결과와 일치하는 교각의 하중-변위 이력곡선을 도출하고자 수정된 trilinar 이력거동모델을 이용하였다 철근과 콘크리트의 비선형 거동특성과 각 하중단계에 따른 교각의 중립축을 구하여 소성힌지부의 모멘트와 변형률을 구하고 반복하중하에서의 강성의 변화를 해석적으로 모형화하기 위하여 각기 다른 강성을 갖는 5가지 지선을 갖춘 형태의 이력거동모델식을 제안하였다 본 연구에서는 실험적으로 구한 하중-변위 이력곡선을 이용하여 축하중비 주철근비 및 구속철근비에 따른 강도감소지수와 강성감소지수의 영향을 회귀분석을 이용하여 일반식으로 제안하였다 새로운 이력거동 해석 모델을 프로그램 SARCF III에 적용함으로써 기존 철근콘크리트 교각에 강도 및 강성감소 현상을 정확하게 예측하였다

  • PDF

A Study on the Nonlinear Distortion Cancellation of the Loudspeaker at Low Frequencies (스피커시스템의 저주파 영역에서의 비선형 왜곡 보상에 관한 연구)

  • 두세진
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1993.06a
    • /
    • pp.54-57
    • /
    • 1993
  • 본 논문은 스피커 시스템의 이상적이지 못한 특성으로 인해 발생하는 비선형 왜곡을 분석하고 스피커에 입력하는 신호를 처리함으로써 비선형 왜곡을 감소시키도록 하는 것을 목적으로 한다. 비선형 왜곡의 가장 큰 요인인 강성과 force factor의 비선형성을 변위에 관한 2차함수로 모델링하여 이것을 바탕으로 전처리의 여러 계수를 결정하며 변위를 측정하여 귀환시키는 대신 선형 운동방정식을 적용하여 변위를 예측하도록 함으로써 시스템의 구현을 간단히 할 수 있도록 하였다. 이 왜곡보상시스템을 하드웨어로 설계하였다.

  • PDF

A Study on the Reinforcement Effects of Fully-Grouted Rock Bolts (전면접착형 록볼트의 보강효과에 관한 연구)

  • 정해성;문현구
    • Tunnel and Underground Space
    • /
    • v.9 no.3
    • /
    • pp.194-203
    • /
    • 1999
  • The axial stress in rock bolt, the shear stress at the bolt-grout interface and the neutral point are analyzed to understand the mechanical behavior of rook bolt. To analyze the support effects of rock bolt in various geological conditions, numerical analyses are performed with regard to bolt spacing and bolt length in several geological conditions and tunnel sizes. Through the numerical analyses, the distributions of maximum tensile stress and shear stress are determined. And the excavation width of underground opening affects the position of the neutral point. In the circular opening supported by pattern bolting, the increase of confining pressure, the reduction of plastic zone, and that of ground displacement are determined by using the radial stress increase ratio, the plastic zone reduction ratio and the displacement reduction ratio respectively. The results of this study can be applied to a practical tunnel design through understanding of the trends of these support effects.

  • PDF

Centriofuge Model Tests on Excavation Depth-Time-Displacement of Unpropped Diaphragm Walls (Diaphragm Wall에서 굴착깊이-시간-변위에 관한 원심모형실험)

  • Lee, Cheo-Keun;Aan, Kwang-Kuk;Heo, Yol
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.5
    • /
    • pp.179-191
    • /
    • 2000
  • 본 연구에서는 화강토 지반상의 자립식 diaphragm wall의 거동을 연구하기 위하여 벽체의 근입깊이비, 지하수위 및 굴착조건(연속 및 단계굴착)을 변화시키면서 원심모형시럼을 수행하였다. 원심모형실험시 지반굴착은 흙과 동일한 밀도로 혼합된 zine chloride 용액이 배수되도록 밸브를 조작하여 실시하였으며, 굴착에 의해 발생되는 지반의 변형괴 벽체의 변위 및 휨모멘트를 시간경과에 따라 측정하였다. 실험결과, 벽체의 근입깊이비가 증가함에 따라 벽체의 휨모멘트는 증가하는 반면, 굴착과정동안 배면측에서의 간극수압 감소속도는 감소하였다. 최종 굴착단계에서 굴착후 시간경과에 따른 침하량은 굴착과정중의 침하?에 비해 5~7% 정도를 나타내었다. 최대표면침하량과 벽체변위를 굴착깊이로 정규화한 결과 최대 침하량은 벽체 변위량의 0.8~1.2배9평균0.91배)사이에 분포하였다. 굴착깊이로 전규화한 벽체변위와 근입깊이와의 관계는 지수함수식으로 제안하였다. 파괴면은 직선적인 형태로 파괴면내의 배면측 지반은 벽체를 향하여 하향의 변위를 일으키면서 벽체의 회전에 의해 파괴되었으며, 퐈괴면의 각도는 66~72.5$^{\circ}$정도로 이론적인 파괴면의 각도보다 크게 평가되었다.

  • PDF

Evaluation of inelastic performance of moment resisting steel frames designed by resizing algorithms (재분배 기법 적용에 따른 모멘트 저항골조의 비선형 특성 평가)

  • Seo, Ji Hyun;Kwon, Bong kwon;Park, Hyo Seon
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.3
    • /
    • pp.361-371
    • /
    • 2006
  • In recent years, to overcome drawbacks related to the aplicati on of classical structural optimization algorithms, various drift design methods based on factores of member displacement participation factors have been developed to size members if they satisfy stiffness criteria. In particular, a resizing algorithm based on dynamic displacement participation factors from the response spectrum analysis has been applied in the drift design of steel structures subjec ted to seismic lateral forces. In this aproach, active members are selected for displacement control based on the displacement participation fa ve members may be taken out and added to the active members for the drift control. The resizing algorithm can be practically and effectively applied to drift design of high-rise buildings however, the inelastic behavior o f the resizing algorithm has not ben evaluated yet. To develop the resizing algorithm considering the performance of nonlinearity as well a s elastic stifness, the evaluation model of resizing algorithm s is developed and aplied to the examples of moment-resisting steel frame, which is one of the simplest structural systems. The inelastic behavior of moment-resisting steel frame designed by the resizing algorithm is also discussed.

Effects of Inelastic Demand Spectrum on Seismic Capacity Evaluation of Curved Bridge by Capacity Spectrum Method (역량스펙트럼을 이용한 곡선교의 내진성능평가에 대한 비탄성요구스펙트럼의 영향)

  • Cho, Sung Gook;Park, Woong Ki;Joe, Yang Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.195-206
    • /
    • 2011
  • The capacity spectrum method(CSM) has been more frequently used as a tool to evaluate the seismic capacity of the structure. Many formulas of strength reduction factors(SRF) have been proposed and adopted to generate the inelastic demand spectrum for the CSM. This study evaluates the impacts of the type of the SRF on the inelastic demand spectrum and finally on the seismic response displacement of curved bridge. For the purpose, the several existing formulas of SRFs were comparatively investigated through the case study. Curved bridges with different subtended angles were selected and the displacements of the bridge piers were estimated by using the different formulas of SRFs. Nonlinear time history analyses were also performed for the validation purpose of the CSM results. According to study results, the CSM may generate the larger displacement responses than the actual behaviors for the curved bridge with larger subtended angles. Though many methods have been suggested to generate the inelastic demand spectrum for CSM, they might not give noticeable differences in inelastic displacement of the bridge pier.

Inelastic Displacement Ratio for SDOF Bilinear and Damping Systems (이선형 단자유도 감쇠시스템의 비탄성변위비)

  • Han, Sang-Whan;Bae, Mun-Su;Cho, Jong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.6
    • /
    • pp.53-61
    • /
    • 2007
  • This study investigates the effect of site class, post-yield stiffness ratio, damping ratio, yield-strength reduction factor, and natural period on inelastic displacement ratio of bilinear SDF systems located at the sites classified as NEHRP site class B,C,D. The previous studies developed inelastic displacement ratio using equal displacement rule in the intermediate and long period range. But, this approximation overestimates the inelastic displacement ratio. Furthermore, inelastic displacement ratio has not been developed for the systems having a damping ratio less than 5%. This study conducts nonlinear regression analysis for proposing equations for calculating median and deviation of the inelastic displacement ratio of the bilinear SDOF system having damping ratios ranging from 0 to 20%. Using median and deviation of the inelastic displacement ratio, probabilistic inelastic displacement ratio is estimated, which can be used for performance-based seismic evaluation.

Displacement and Velocity Dependence of Clamped Shape Metallic Dampers (꺽쇠형 강재 댐퍼의 변위 및 속도 의존성)

  • Lee, Hyun Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.62-70
    • /
    • 2013
  • The purpose of this study is the displacement and velocity dependence evaluation of clamped shape metallic damper, which were evaluated superior in energy dissipation capacity than straight type slit damper. For this purpose, 6 metallic damper specimens are prepared and dependence test are performed. Test variables are displacement dependence and velocity dependence. According to displacement dependence test results, larger target displacement (50mm) shows lower cyclic numbers and cumulated energy dissipated area than lower target displacement (25mm). Also it shows higher strength and early failure than short target displacement. In velocity dependence evaluation, fast target velocity (60mm/sec) shows lower cyclic numbers and cumulated energy dissipated area than slow target velocity (40mm/sec). Therefore the hysteresis dependence of metallic damper were evaluated as close relation to the loading displacement and velocity conditions.

Evaluation of Ductility in Reinforced Concrete Members Using Material Models in Eurocode2 (유로코드 2 재료모형을 사용한 철근콘크리트 부재의 연성도 평가)

  • Choi, Seung Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.287-297
    • /
    • 2015
  • In concrete structural design provisons, there is a minimum allowable strain of steel to ensure a ductility of RC members and a c/d is limited for the same purpose in EC2. In general, a ductility capacity of RC members is evaluated by a displacement ductility which is a ratio of ultimate displacement to yield displacement, and it is necessary to calculate accurately a yield displacement and an ultimate displacement to evaluate a displacement ductility. But a displacement in members is affected by various member characteristics, so it is hard to calculate a displacement exactly. In this study, a displacement ductility is calculated by calculating a yield displacement and an ultimate displacement through a moment-curvature relationship. The main variables examined are concrete strength, yield strength, steel ratio, spacing of confinement, axial force ratio and concrete ultimate strain. As results, as a concrete strength is increased, a ductility displacement is increased. But as yield strength, steel ratio, spacing of confinement and axial force ratio are increased, a displacement ductility is decreased. And a displacement ductility is necessary to calculate a response modification factor (R) of columns for seismic design, so it is appeared that it is important to calculate a displacement ductility more accurately.