• Title/Summary/Keyword: 벽면압력

Search Result 235, Processing Time 0.026 seconds

Flow Analysis over Moving Circular Cylinder Near the Wall at Moderate Reynolds Number (낮은 레이놀즈 수에서 벽면에 근접하여 이동하는 실린더 주위의 유동해석)

  • Kwag, Seung-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1091-1096
    • /
    • 2012
  • The aerodynamic characteristics of circular cylinder in a channel are studied to make clear the flow feature by solving the Navier-Stokes equation based on the finite volume method with unstructured grids. Reviews are made on with the vorticity, velocity, dynamic pressure, residual and drag, where the Reynolds numbers are 50 and 100. The flows for $Re{\succeq}50$ shows the vortex shedding in the wake, and the result is the same as the case of moving cylinder. The ground effect of flat bottom results in the growth of vortex, being generated in the upper side of the cylinder and elongated in the rear. As the cylinder approaches to wall, for example 0.6, the cylinder plays as a role of blockage to obstruct the flow between the cylinder and wall. The drag coefficients are compared with others' results to confirm the validity of the present numerical simulation.

Stress Analysis of Pressurization Type Propellant Tank in the Satellite (인공위성용 능동가압형 추진제 탱크의 응력 해석)

  • 한근조;심재준;최진철
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.1
    • /
    • pp.21-30
    • /
    • 1998
  • Design parameters which used to analyze the stress distribution on the tank wall were defined to develop the propellant tank and obtain optimal values. 1/4 modeling of total tank was selected to calculate the stress distribution with respect to the variation of the support lug location and the tank wall thickness and 1/2 modeling was selected for the stress distributions with respect to the variation of fuel outlet location. Actually, 350psi was applied as static load and 12 gravity as a dynamic load during launching on the internal tank wall. The structural analysis was done with respect to attaching condition of the tank in the satellite. Also the effect of the variation of the propellant outlet location from $0^{\cire}$ to $25^{\cire}$ on the stress distribution was investigated. The equivalent stress distribution and optimal parameters induced from analysis results of the each condition will be used as the fundamental data to design the propellant tank.

  • PDF

Numerical Study on Heat Transfer Characteristic in Combustor Nozzle (추진기관 노즐의 열전달 특성에 관한 수치적 연구)

  • Namkoung, Hyuck-Joon;Han, Poong-Gyoo;Lee, Kyoung-Hoon;Kim, Young-Soo;Jeong, Hae-Seung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.275-281
    • /
    • 2007
  • For a cooling performance research of the combustor operated in a extreme environment of a high temperature and high pressure, we accomplished a cooling performance analysis. Generally a heat transfer characteristic in cooling passage is known well experimentally and theoretically, however heat flux in the combustion chamber isn't. In this study, fluid flow combined with heat transfer analysis is accomplished about a combustor nozzle. We tried to analyze the cooling performance with a heat transfer characteristic of a gas and coolant side in the view point of quantity on the mass flow rate to be supplied to the cooling channel. And finally, evaluation on the thermal safety of nozzle wall material was accomplished.

  • PDF

A Comparative Study of Frequency Response Models for Pressure Transmission System (압력전달시스템을 위한 주파수응답모델들의 비교 연구)

  • Kim, Hyeonjun;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.2
    • /
    • pp.83-93
    • /
    • 2020
  • Dynamic pressure transducer needs to be flush-mounted on hardware due to frequency response characteristics of pressure transmission system. However, it is sometimes necessary to be mounted in recessed configuration due to insufficient space for sensor installation and for protection of sensor from thermal damage. Dynamic response characteristics should be considered due to distortion of original dynamic pressure signal in the pressure transmission system. In this study, small perturbation model and 2nd order reduced model were compared with experiments and a guideline for selecting a frequency response model was suggested.

The Secondary Chamber Pressure Characteristics of Sonic/Supersonic Ejector-Diffuser System (음속/초음속 이젝터 시스템의 2차정체실 압력특성)

  • 이준희;최보규;김희동;박종호
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.4
    • /
    • pp.50-56
    • /
    • 2001
  • The present study is an experimental work of the soni $c^ersonic air ejector-diffuser system. The pressure-time dependence in the secondary chamber of this ejector system is measured to investigate the steady operation of the ejector system. Six different primary nozzles of two sonic nozzles, two supersonic nozzles, petal nozzle, and lobed nozzle are employed to drive the ejector system at the conditions of different operating pressure ratios. Static pressures on the ejector-diffuser walls are to analyze the complicated flows occurring inside the system. The volume of the secondary chamber is changed to investigate the effect on the steady operation. the results obtained show that the volume of the secondary chamber does not affect the steady operation of the ejector-diffuser system but the time-dependent pressure in the secondary chamber is a strong function of the volume of the secondary chamber.er.

  • PDF

Performance Study on the Supersonic Diffuser Contraction Ratio of High-Altitude Test Facility for Hypersonic Propulsion (극초음속 추진기관 고공환경 시험장치의 이차목 디퓨저 수축비에 따른 성능연구)

  • Lee, Seongmin;Shin, Donghae;Shin, Mingyu;Ko, Youngsung;Kim, Sunjin;Lee, Jungmin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1026-1030
    • /
    • 2017
  • In this study, we propose an supersonic diffuser that is one of test facilities for hypersonic propulsion engine, and conduct numerical analyses and cold flow test using each diffuser as the corresponding variable. Specifically, inner flow characteristics are computed based on mach number and pressure by the numerical analyses. Also, we test through cold flow test the pressure in the vacuum chamber and the inner pressure that is formed by the wall pressure. Finally, we compare the results from cold flow test and the numerical analyses, and report a preliminary result that might be useful to construct a better test facility of hypersonic propulsion engine in the future.

  • PDF

A Numerical Study of the Flow Characteristics and Starting Pressure of a Center Body Diffuser According to the Center Body Position and Cone Angle (Center Body 위치와 Cone 각도에 따른 Center Body Diffuser의 유동특성 및 시동에 대한 수치적 연구)

  • Lee, Sung Hun;Park, Jin;Kim, Hong Jip
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.10-18
    • /
    • 2019
  • In this study, flow characteristics and the starting pressure of a center body diffuser (CBD) were analyzed at various center body (CB) positions and cone angles. According to the CB position, the location of oblique shock moved to the front from behind the CB cone with an increase in the flow momentum. Additionally, when a strong oblique shock occurred, the direction of supersonic flow was affected and induced to diffuser wall. As a function of different cone angles for the oblique shock, the starting pressure of the CBD was significantly affected.

Experimental Study on Peak-Pressure Variation Due to Compression by Using RCM (급속 압축장치(RCM)의 압축 조건에 따른 최대 압력 변화에 관한 실험적 연구)

  • Kim, Hye-Min;Kim, Hak-Young;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.197-204
    • /
    • 2011
  • RCM is used to clarify the complex phenomena of engine combustion. In order to describe engine combustion, several significant experimental studies are considered. Prediction of the peak pressure is very important since it has a significant influence on engine combustion. In addition, peak-temperature variation can be calculated from the measured peak pressure by using the fundamental thermodynamic relation. When the RCM is in operation, heat transfer occurs through the cylinder wall. Because of this phenomenon, it is difficult to determine the peak pressure without employing the case by case experimental method. The goal of this study is to evaluate the peak pressure analytically. We conduct an experiment to confirm the relationship between the peak pressure and some parameters. Using the results of the peak pressure variation experiment, we develop a general equation that be used to calculate the peak pressure as a function of operation time and compression ratio.

Analysis on Heat Loss of Hybrid Safety Injection Tank to Predict Pressure Equalizing Time (혼합형 안전주입탱크의 압력평형 예측을 위한 열손실 평가)

  • Kim, Myoung Jun;Ryu, Sung Uk;Kim, Jae Min;Park, Hyun-Sik;Yi, Sung-Jae
    • Journal of Energy Engineering
    • /
    • v.26 no.3
    • /
    • pp.71-77
    • /
    • 2017
  • In the event of loss of coolant accident (LOCA) and station black out (SBO) in the primary system of a nuclear reactor, the coolant water should be injected to reactor coolant system (RCS) without any intervention of operators or active components. To satisfy the requirements, hybrid safety injection tank (Hybrid SIT) was suggested by Korea Atomic Energy Research Institute (KAERI). The pressure equalizing time of Hybrid SIT is an important parameter to determine the timing of coolant injection. To predict the pressure equalizing time of the Hybrid SIT, a separate effect test facility was constructed and sensitivity tests were conducted in various conditions. The main parameter determining the pressure equalizing time was obtained from separate effect test (SET) results. The wall of condensation on the inner wall of SIT and direct contact condensation on the water surface affected to the pressure equalizing time very much. In this study, the effect of each condensation phenomena on pressure equalizing time was quantitatively analyzed from results of SET and a prediction method of pressure equalizing time was proposed.

Numerical Study of Two-Dimensional Supersonic Ejector Flows (이차원 초음속 이젝터 유동에 대한 수치해석적 연구)

  • 김희동;이영기;서태원
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.1
    • /
    • pp.1-12
    • /
    • 1998
  • Industrial ejector system is a facility to transport, to compress or to pump out a low pressure secondary flow by using a high pressure primary flow. An advantage of the ejector system is in its geometrical simplicity, not having any moving part, compared with other fluid machinery. Most of the previous works have been performed experimentally and analytically. The obtained data. are too insufficient to improve our current understanding on the detailed flow field inside the ejector. In order to provide more comprehensive data on this ejector flow field, two-dimensional computations using Reynolds-averaged Navier-Stokes equations were performed for a very wide range of operating pressure ratio of the supersonic ejector with a secondary throat. The current results showed that the supersonic ejector system has an optimum pressure ratio for the secondary flow total pressure to be minimized. The numerical results clearly revealed the shock system, shock/boundary layer interaction, and secondary flow entrainment inside the supersonic ejector.

  • PDF