• Title/Summary/Keyword: 벤토나이트 혼합토

Search Result 28, Processing Time 0.025 seconds

Strength and Permeability Characteristics of Soil-Bentonite Mixture (Soil-Bentonite 혼합토의 강도 및 투수 특성)

  • Jin, Guangri;Im, Eunsang;Kim, Kiyoung;Sin, Donghoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.4
    • /
    • pp.5-12
    • /
    • 2010
  • Soil mixture using bentonite as a cutoff material is used a lot for various structures such as landfills, banks and dams as cutoff materials. But seepage water is expected to seep since shear failure of filter layer occurs due to external load, embankment load when constructed. Generally, only coefficient of permeability of Soil Mixture is considered irrespective of the changes of intensity on amount of additives. This research is to study on how the changes of amount of bentonite affects permeability and strength of soil mixture. So successive experiments for measuring permeability and strength were conducted as the amount of bentonite changes from 0 to 4%, mixing with the bed material and then making specimens. Around construction site of B dam. As a result, 2.085E-07 cm/sec was shown when the amount of Soil Mixture was 4%. It is proved that unconfined compressive strength and tensile strength increase as the amount of bentonite increases, but saturation shear strength of bentonite soil mixture from the CD experiment is hardly influenced by the amount of bentonite.

A Study on Unsaturated Permeable Properties of the Soil-Bentonite Mixtures (Soil-Bentonite 혼합토의 불포화 투수특성 연구)

  • Kim Man-il
    • The Journal of Engineering Geology
    • /
    • v.15 no.2 s.42
    • /
    • pp.123-132
    • /
    • 2005
  • This study presents the results of a laboratory investigation performed to study physical properties of soil-bentonite mixtures through the vertical permeation test and dielectric measurement test using Frequency Domain Reflectometry system for the liner of waste landfill. For the laboratory experiments, geotechnical testing was conducted on pre-mixed soil-bentonite which is consisted of standard sand, weathered granite soil and bentonite for estimating physical parameters such as a volumetric water content, void ratio and dielectric constant. In experiment results, initial soil-bentonite mixing rate has an effect of change of volumetric water content. Also change of volumetric water content of a soil-bentonite mixture is clearly detected to measure a response of dielectric constant. In order to estimate an unsaturated permeable property of soil-bentonite mixtures, equations between volumetric water content and dielectric constant were derived from this study.

A Study on Characteristics of Hydraulic Conductivity in the Soil-Bentonite Mixed Soils with Compaction Energy and Swelling in the Landfill (폐기물매립장에서 다짐에너지와 팽윤도에 의한 토양-벤토나이트 혼합토의 투수계수 특성에 관한 연구)

  • 이종민;이재영
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.61-72
    • /
    • 2001
  • A barrier liner system is placed at the bottom and side slope in landfill to protect a leaking of leachate that the hydraulic conductivity of this system should be less than It 107cm/sec. In this study, the soil-bentonite mixture for the bottom liner system was evaluated in two point of views : changing characteristics of the hydraulic conductivity according to the different mixing ratio of soil-bentonite with the effect of bentonite swelling and the difference method (A & D type) of compaction on the hydraulic conductivity. As the results, maximum dry density (${\gamma}$$_{dmax}$) of SC group mixture was higher than of CL group mixture. However, the result of optimum moisture contents(OMC) of both groups were the contrary. In case of ${\gamma}$$_{dmax}$ by different compaction method, D type was higher than A. But the OMC were the contrary. The difference of ${\gamma}$$_{dmax}$ according to the Compaction energy, “SC” group mixture W3S higher than the “CL” group. In case of OMC of “CL” group was higher than “SC” group. The effecting of swelling was a little bit different on the two factors. According to the result of compaction test, the use of site soil only could not meet the criteria on hydraulic conductivity, but could find a solution for the mixing ratio of bentonite mixture were satisfied to the standard of barriation. The increased in bentonite mixing ratio and degree of swelling, the values of hydraulic conductivity were decreased. Especially the “CL” group with “D” type compaction measured the lowest value with the same conditions. Also, the bentonite mixing ratio has more influenced on the hydraulic conductivity compare with swelling effect. The “SC” group mixture with “A” typo compaction got a big difference from others. The evaluation of economic for the construction cost on the two cases, the lower bentonite mixing ratio of soil-bentonite mixed soil is more economically because of bentonite cost.

  • PDF

A Study for Permeability as Mixing Ratio at Bentonite-mixed Soil (벤토나이트 혼합토의 혼합비에 따른 투수성 연구)

  • Ju Jae-Woo;Suh Kyeh-Won;Park Jong-Beom
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.1
    • /
    • pp.45-52
    • /
    • 2006
  • A theoretical equation, from which we can get a suitable ratio of bentonite at bentonite-mixed soil, was derived for desigri of the impermeable condition. Bentonite is a soil with great expansion property and it has the permeability lower than $1\times10^{-7}cm/sec$ in spite of its maximum expansion state. Accordingly if the void of soil is filled with the liquid of bentonite, water will flow only through the veid of bentonite liquid. And the permeability of bentonite-mixed soil will always satisfy the condition as impermeable zone. However, because it is very difficult to mix uniformly bentonite with soil, it is thought that the actual mixing ratio fur the impermeable zone will be grater than that by theoretical equation. Permeability tests were performed to check the equation and a modified equation was suggested from the experimental results.

A Study on the Material Properties of Admixed Liners for Waste Fill (폐기물 매립장을 위한 혼합 차수재의 물성에 관한 연구)

  • Son, Jun-Ik;Jeong, Ha-Ik;Jang, Yeon-Su
    • Geotechnical Engineering
    • /
    • v.8 no.3
    • /
    • pp.51-60
    • /
    • 1992
  • This paper represents the physical and engineering characteristics of admixed liners obtained from several laboratory tests. Fly ash and weathered granitic soil are selected as primary materials, and bentonite and cement are used as additives. The results show that the maximum dry density reaches peak values at 5% and 25% of bentonite for Seochon and Samchonpo fly ash respectively, and for the weathered granitic soil, the maximum dry density increases continuously as the amount of bentonite increases. The strength of the admixed materials is not sensitive to the bentonite content, although it increases when the additives is cement. The required amount of bentonite to reach the hydraulic conductivity less than 10-7cm/sec are 18, 30, 10% of the sample weights for Seochon and Samchonpo fly ashes and the weathered granitic soil. The amount of additives show significant differences and depend on the grain size and their distributions and the amount of fine content in the primary materials

  • PDF

Assessment of Hydraulic Conductivity of Modified Bentonite and Local Soil Mixture under Salt Water Condition (개량 벤토나이트와 현장토 혼합 차수층의 염수조건하에서의 투수성 평가)

  • Xu, Xin;Oh, Myounghak;Park, Junboum
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.11
    • /
    • pp.97-104
    • /
    • 2017
  • A bentonite mixing with local soil widely used as liner layer for landfill should have low permeability less than $1{\times}10^{-7}cm/s$. But there are several limitations of bentonite used as liner layer, such as drying shrinkage cracking, ineffective waterproof ability under salt water condition like flocculation under sea water. The purpose of this research is the development of a salt resistance bentonite by mixing sepiolite and guar gum to overcome the weak points of bentonite to get high water resistance capacity and permeability coefficient below $1{\times}10^{-7}cm/s$ under salt water condition. After having performed drying shrinkage cracking test, swelling index test, compaction test, and hydraulic conductivity test we confirmed the optimal mixing ratio of materials and evaluated the performance of materials.

Evaluation of Geotechnical Engineering Properties and Use of Mixed Soil Containing Waste Stone Sludge (폐석분 혼합토의 지반공학적 특성 및 활용에 관한 연구)

  • Kim, Chan-Kee;Jung, Soo-Hoon;Cho, Won-Bum
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.3
    • /
    • pp.17-24
    • /
    • 2008
  • This study is conducted to investigate the possibility of the utilization of the mixed soil formed by mixing stone sludge, bentonite, and residual soil as a soil sealant sustaining both stability and capacity in the barrier system. A series of tests were performed on the mixed soils to evaluate basic properties such as compaction, compressive strength, permeability and CBR of these materials. The results indicates that as the stone sludge content increases, the optimum moisture content increases a little, but the maximum dry density decreases. The compressive strength and CBR decrease, and the cohesion, internal friction angle and expansion ratio increase. When the bentonite content increases, the maximum dry density decreases, and the optimum moisture content, compressive strength and cohesion, internal friction angle, CBR and expansion ratio increase. Mixing ratio of the mixed soil contained with the stone dust more than 10% and the bentonite less than 10% satisfies the standard of the permeability coefficient as the soil sealant.

  • PDF

A study on the fixation of heavy metals with modified soils in the landfill liner (개량혼합토를 이용한 폐기물 매립지 차수층의 중금속 고정능력에 관한 연구)

  • 노회정;이재영
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.63-71
    • /
    • 2002
  • The authors selected the modified soil method, and then performed the geotechnical and environmental laboratory test, and evaluated whether the modified soil liner could be accepted as a barrier layer in landfill. Unlike the results of the natural soil(CL), those of the hydraulic conductivity test of stabilized soil met the standard value. According to these results, the optimal mixing ratio of a mixture(cement : bentonite : stabilizing agent) was 90 : 60 : 1 with mass ratio(kg) for 1㎥ with soil, and it was possible to use poor quality bentonite. B\circled2 because of a little difference from results with high quality bentonite. B\circled1. The Cation Exchange Capacity(CEC) of the modified soil was increased about 1.5 times compared with the natural soil; however. the change of CEC with a sort of additives was not detected. In order to observe the change of the chemical components and crystal structures, the natural and the modified soils with the sorts of additives were measured by the XRF(X-Ray Flourescence Spectrometer) and SEM, but there was no significant change. The artificial leachate with the heavy meals ($Pb^{2+}$ , $Cu^{2+}$, $Cd^{2+}$ Zn$^{2+}$ 100mg/L) was passed through the natural soil and modified soils in columns. In the natural soil, Cd$^{2+}$ and $Zn^{2+}$ were identified, simultaneously the pH of outflow was lower, and then came to the breakthrough point. The removal efficiency of the natural soil was showed in order of following : $Pb^{2+}$$Cu^{2+}$ > $Zn^{2+}$ > $Cd^{2+}$ On the other hand, modified soils were not showed the breakthrough condition like the result of the natural soil. The modified soil with the lower quality bentonite, B\circled2(column3) was more stable with respect to chemical attack than that with the higher bentonite, B\circled1(column2) because the change range of outflow pH in columns was less than that of outflow pH in column2. In addition, the case of adding the stabilizing agent(column4) was markedly showed the phenomena.ena.

Dynamic Behavior Properties of Decomposed Granite Soil varying Content of Stone Sludge and Bentonite (석분 및 벤토나이트 함유량에 따른 화강풍화토의 동적거동 특성)

  • Lee, Kang-Il;Kim, Min-Jun;Kim, Tae-Hoon;Woo, Jong-Tae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.1
    • /
    • pp.35-45
    • /
    • 2012
  • Dynamic characteristics of decomposed granite soil mixed with stone sludge and bentonite were investigated to figure out adequate applications of stone sludge, A total of 16 specimens with different stone sludge contents of 0%, 5%, 10%, 15% and bentonite with 0%, 5%, 10%, 15% were prepared. Resonant column tests were carried out on each specimen at different confining pressure. The results showed that the optimum mixing ratio which can satisfy the maximum shear modulus and the minimum damping ratio of the decomposed granite soils ranges from 5% to 10% respectively.

Effect of Sodium Chloride on Stress-Deformation of Sand Bentonite Mixture (염분이 모래와 벤토나이트 혼합토의 응력 변형에 미치는 영향)

  • 안태봉
    • Geotechnical Engineering
    • /
    • v.13 no.2
    • /
    • pp.17-28
    • /
    • 1997
  • In this study sodium chloride solution is employed for chemicals, and several cylindrical triaxial tests are performed on the sand-bentonite mixtures saturated with sodium chloride solution. Deformation(elastic modulus, E) and strength(cohesion, c', and angle of friction, f') parameters are obtained from the triaxial tests as functions of confining pressure and sodium chloride solution concentrations. The results here indicate an increase in the value of effective cohesion with increase in the concentration of NaCl solution, which can be explained by using the Gouy-Chapman model. The value of the effective angle of shearing resistance does not show significant change with the increase in concentration of NaCl solution. The Young's modulus also increases with the increase in concentration of NaCl solution.

  • PDF