• Title/Summary/Keyword: 벤질알코올

Search Result 46, Processing Time 0.022 seconds

Manganese Dioxide-Based Chlorination of Alcohols Using Silicon Tetrachloride (이산화망간 존재하에서 사염화규소를 이용한 알코올의 염소화반응)

  • Ha, Dong Soo;Yoon, Myeong Jong
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.10
    • /
    • pp.541-546
    • /
    • 1997
  • Manganese dioxide may react with silicon tetrachloride to form manganese(Ⅳ) oxodichloride which reacts subsequently with another molecule of silicon tetrachloride leading to manganese tetrachloride eventually in chlorinated solvents. This in situ generated manganese(Ⅳ) oxodichloride or manganese tetrachloride were found to be very effective for the chlorination of a wide variety of alcohols to the corresponding chlorides. Primary, secondary and benzylic alcohols were converted into corresponding chlorides when treated with silicon tetrachloride in the presence of manganese dioxide at room temperature.

  • PDF

Kinetics and Mechanism of the Oxidation of Substituted Benzyl Alcohols by Cr(VI)-Heterocyclic Complex (2,4'-Bipyridinium Chlorochromate) (크롬(VI)-헤테로고리 착물(2,4'-비피리디늄 클로로크로메이트)에 의한 치환 벤질 알코올류의 산화반응에서 속도론과 메카니즘)

  • Park, Young Cho;Kim, Young Sik
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.648-653
    • /
    • 2014
  • Cr(VI)-heterocyclic complex (2,4'-bipyridinium chlorochromate) was synthesized by the reaction between heterocyclic compound(2,4'-bipyridine) and chromium trioxide, and characterized by IR and ICP analysis. The oxidation of benzyl alcohol using 2,4'-bipyridinium chlorochromate in various solvents showed that the reactivity increased with the increase of the dielectric constant (${\varepsilon}$), in the order : N,N-dimet-hylformamide (DMF) > acetone > chloroform > cyclohexene. In the presence of DMF solvent with acidic catalyst such as hydrochloric acid (HCl solution), 2,4'-bipyridinium chlorochromate oxidized benzyl alcohol (H) and its derivatives (p-$CH_3$, m-Br, m-$NO_2$). Electron-donating substituents accelerated the reaction rate, whereas electron acceptor groups retarded the reaction rate. The Hammett reaction constant (${\rho}$) was -0.67 (303 K). The observed experimental data have been rationalize the proton transfer occurred followed the formation of a chromate ester in the rate-determining step.

Synthesis of Pd/TiO2 Catalyst for Aerobic Benzyl Alcohol Oxidation (호기성 벤질 알코올 산화반응을 위한 팔라듐 이산화티타늄 촉매 개발)

  • Cho, Tae Jun;Yoo, Kye Sang
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.281-285
    • /
    • 2014
  • $Pd/TiO_2$ particles were prepared by wet impregnation for aerobic benzyl alcohol oxidation. Catalysts were prepared by the impregnation of 10 wt% palladium on $TiO_2$ after calcination at various temperatures. The surface areas of the catalysts were changed with calcination temperature. The catalyst calcined at $300^{\circ}C$ possessed the highest surface areas. Catalytic activity of the prepared samples was examined for aerobic benzyl alcohol oxidation. Among the samples, $Pd/TiO_2$ calcined at $300^{\circ}C$ showed the highest catalytic activity. Moreover, the catalysts with various Pd concentrations from 5 wt% to 15 wt% were prepared to investigate an optimum catalyst. 10 wt% $Pd/TiO_2$ was the most active in this reaction due to its higher surface areas and metal dispersion.

NMR Spectroscopy and Mass Spectrometry of Benzyl Alcohol Galactoside synthesized using β-Galactosidase (베타-갈락토시데이즈를 이용하여 합성된 Benzyl Alcohol Galactoside의 NMR Spectroscopy 및 Mass spectrometry)

  • Lee, Hyang-Yeol;Jung, Kyung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.84-89
    • /
    • 2019
  • To characterize the molecular structure of BzO-gal synthesized using Escherichia coli ${\beta}$-gal, NMR ($^1H$- and $^{13}C$-) spectroscopy and mass spectrometry of BzO-gal were conducted. $^1H$ NMR spectrum of BzO-gal showed multiple peaks corresponding to the galactosyl group, which is an evidence of galactosylation on BzOH. Five proton peaks around the aromatic region at ${\delta}_H$ 7.43 ~ 7.24 ppm and 2 peaks from ${\delta}_H$ 4.93 and 4.67 ppm were evidence of the presence of the benzyl group. Seven proton peaks at ${\delta}_H$ 4.32 ~ 3.46 ppm showed the presence of a monosaccharide and were indicative of galactosylation on BzOH. $^{13}C$ NMR spectrum also revealed the presence of 11 carbons suggestive of BzO-gal. The mass value (sodium adduct ion of BzO-gal, m/z = 293.0994) from mass spectrometry analysis of BzO-gal, and $^1H$ and $^{13}C$ NMR spectral data were in good agreement with the expecting structure of BzO-gal. We are expecting that through future study it will eventually be able to develop a new additive of low cytotoxicity.

A Study for Kinetics and Oxidation Reaction of Substituted Benzyl Alcohols Using Cr(VI)-6-Methylquinoline (Cr(VI)-6-Methylquinoline을 이용한 치환 벤질 알코올류의 산화반응과 속도론에 관한 연구)

  • Park, Young Cho;Kim, Young Sik
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.372-376
    • /
    • 2015
  • 6-MQCC (Cr(VI)-6-methylquinoline) complex was synthesized by the reaction of 6-methylquinoline with chromium(VI) trioxide in 6 M HCl. The structure was characterized using IR (Infrared Spectroscopy) and ICP (Inductively Coupled Plasma) analysis. The oxidation of benzyl alcohol using 6-MQCC in various solvents showed that the reactivity increased with the increase of the dielectric constant, in descending order of DMF > acetone > chloroform > cyclohexene. In the presence of DMF solvent with acidic catalyst such as sulfuric acid ($H_2SO_4$), 6-MQCC oxidized benzyl alcohol (H) and its derivatives ($p-OCH_3$, $m-CH_3$, $m-OCH_3$, m-Cl, $m-NO_2$) were effectively oxidized. Electron-donating substituents accelerated the reaction rate, whereas electron acceptor groups retarded the reaction rate. The Hammett reaction constant (${\rho}$) was -0.69 (308 K). The observed experimental data was used to rationalize the fact that the hydride ion transfer occurred at the rate-determining step.

Kinetics of the Oxidation of Substituted Benzyl Alcohols with 4-(Dimethylamino)pyridinium Dichromate (4-(Dimethylamino)pyridinium Dichromate를 이용한 치환 벤질 알코올류의 산화반응 속도)

  • Choi, Sun do;Park, Young Cho
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.153-157
    • /
    • 2005
  • 4-(Dimethylamino)pyridinium dichromate was synthesized by the reaction of 4-(dimethylamino)pyridine with chromium(VI)trioxide in $H_2O$, and characterized by IR, EA and ICP. The oxidation of benzyl alcohol using 4-(dimethylamino)pyridinium dichromate in various solvents showed that the reactivity increased with the increase of the dielectric constant, in the order: cyclohexen < chloroform < acetone < N,N-dimethylformamide. In the presence of hydrochloric acid(HCl), 4-(dimethylamino)pyridinium dichromate oxidized benzyl alcohol and its derivatives ($p-CH_3$, H, m-Br, $m-NO_2$) smoothly in N,N-dimethylformamide. Electron-donating substituents accelerated the reaction, whereas electron-withdrawing groups retarded the reaction. The Hammett reaction constant($\rho$) was -0.70 at 303K. The observed experimental data have been rationalized as follows: the proton transfer occurs after the prior formation of a chromate ester in the rate-determining step.

Kinetics and Mechanism of the Oxidation of Substituted Benzyl Alcohols by Cr(VI)-4,4'-Bipyridine Complex (크롬(VI)-4,4'-Bipyridine 착물에 의한 치환 벤질 알코올류의 산화반응 속도론과 메카니즘)

  • Kim, Young-Sik;Park, Young-Cho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.462-469
    • /
    • 2012
  • Cr(VI)-4,4'-bipyridine complex(4,4'-bipyridinium dichromate) was synthesized by the reaction of 4,4'-bipyridine with chromium trioxide in H2O, and characterized by IR, ICP. The oxidation of benzyl alcohol using 4,4'-bipyridinium dichromate in various solvents showed that the reactivity increased with the increase of the dielectric constant(${\varepsilon}$), in the order: cyclohexene$CH_3$, H, m-Br, m-$NO_2$) smoothly in N,N'-dimethylformamide. Electron-donating substituents accelerated the reaction, whereas electron acceptor groups retarded the reaction. The Hammett reaction constant(${\rho}$) was -0.63(303K). The observed experimental data have been rationalized as follows; the proton transfer occurs after the prior formation of a chromate ester in the rate determining step.

A Study for Mechanism and Oxidation Reaction of Substituted Benzyl Alcohols using Cr(VI)-Heterocyclic Complex[Cr(VI)-2-methylpyrazine] (Cr(VI)-헤테로고리 착물[Cr(VI)-2-methylpyrazine]를 이용한 치환 벤질 알코올류의 산화반응과 메카니즘에 관한 연구)

  • Kim, Young-Sik;Park, Young-Cho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.6039-6046
    • /
    • 2013
  • Cr(VI)-heterocyclic complex[Cr(VI)-2-methylpyrazine] was synthesized by the reaction between of heterocyclic compound(2-methylpyrazine) and chromium trioxide, and characterized by IR and ICP analysis. The oxidation of benzyl alcohol using Cr(VI)-2-methylpyrazine in various solvents showed that the reactivity increased with the increase of the dielectric constant(${\varepsilon}$), in the order : cyclohexene${\rho}$) was Cr(VI)-2-methylpyrazine= -0.65(308K). The observed experimental data have been ratiolized. The hydride ion transfer causes the prior formation of a chromate ester in the rate-determining step.

Kinetics of the Oxidation of Substituted Benzyl Alcohols using 6-Methylquinolinium Dichromate (6-Methylquinolinium Dichromate를 이용한 치환 벤질 알코올류의 산화반응 속도)

  • Kim, Young-Sik;Park, Young-Cho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5990-5996
    • /
    • 2011
  • 6-Methylquinolinium dichromate[$(C_{10}H_9NH)_2Cr_2O_7$] was synthesized by the reaction of 6-methylquinoline with chromium trioxide in $H_2O$, and characterized by IR, ICP. The oxidation of benzyl alcohol using 6-methylquinolinium dichromate in various solvents showed that the reactivity increased with the increase of the dielectric constant(${\varepsilon}$), in the order: cyclohexene < chloroform < acetone < N,N- dimethylformamide. In the presence of hydrochloric acid($H_2SO_4$ solution), 6-methylquinolinium dichromate oxidized benzyl alcohol and its derivatives(p-$OCH_3$, m-$CH_3$, H, m-$OCH_3$, m-Cl, m-$NO_2$) smoothly in DMF. Electron-donating substituents accelerated the reaction, whereas electron acceptor groups retarded the reaction. The Hammett reaction constant(${\rho}$) was -0.67(303K). The observed experimental data was used to rationalize the hydride ion transfer in the rate-determining step.

Kinetic Study on the Oxidation Reaction of Substituted Benzyl Alcohols by Cr(VI)-Heterocyclic Complex (2,2'-Bipyridinium Dichromate) (크롬(VI)-헤테로고리 착물(2,2'-Bipyridinium Dichromate)에 의한 치환 벤질 알코올류의 산화반응에 대한 속도론적 연구)

  • Kim, Young Sik;Park, Young Cho
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.241-246
    • /
    • 2012
  • Cr(VI)-heterocyclic complex (2,2'-bipyridinium dichromate) was synthesized by the reaction between of 2,2'-bipyridine and chromium trioxide in $H_2O$, and characterized by IR and ICP. The oxidation of benzyl alcohol using 2,2'-bipyridinium dichromate in various solvents showed that the reactivity increased with the increase of the dielectric constant, in the order: cyclohexene < chloroform < acetone < N,N-dimethylformamide. In the presence of DMF solvent with acidic catalyst such as $H_2SO_4$ solution, 2,2'-bipyridinium dichromate oxidized the benzyl alcohol and its derivatives (p-$p-OCH_3$, $m-CH_3$, H, $m-OCH_3$, m-Cl, $m-NO_2$). Electron-donating substituents accelerated the reaction, whereas electron acceptor groups retarded the reaction. The Hammett reaction constant was -0.66 (303 K). The observed experimental data was used to rationalize the hydride ion transfer in the rate-determining step.